初等数论 课堂笔记 第三章 -- 既约剩余系

本文深入探讨了模运算下的既约剩余系,包括其定义、性质及其与模m互素的关系。文章证明了与模m互素的剩余类的个数是欧拉函数φ(m),并阐述了既约剩余系的构造方法。此外,还讨论了如何通过既约剩余系进行同余运算和模乘法的性质。
摘要由CSDN通过智能技术生成

既约剩余系

定义

  设 K r = { n ∈ Z : n ≡ r (   m o d   m ) } { {K}_{r}}=\left\{ n\in \mathbb{Z}:n\equiv r\left( \bmod m \right) \right\} Kr={ nZ:nr(modm)}是模 m m m的一个剩余类,称 K r { {K}_{r}} Kr与模 m m m互素的剩余类,若
∀ p ∈ K r ,   gcd ⁡ ( p , m ) = 1 \forall p\in { {K}_{r}},\text{ }\gcd \left( p,m \right)=1 pKr, gcd(p,m)=1
事实上,我们指出有以下等价关系:
∀ p ∈ K r ,   gcd ⁡ ( p , m ) = 1   ⇔   gcd ⁡ ( r , m ) = 1 \forall p\in { {K}_{r}},\text{ }\gcd \left( p,m \right)=1\text{ }\Leftrightarrow \text{ }\gcd \left( r,m \right)=1 pKr, gcd(p,m)=1  gcd(r,m)=1
证明
   ∀ p ∈ K r ,   ∃ k ∈ Z ,   s . t .   p = k m + r \forall p\in { {K}_{r}},\text{ }\exists k\in \mathbb{Z},\text{ }s.t.\text{ }p=km+r pKr, kZ, s.t. p=km+r
( ⇒ ) \left( \Rightarrow \right) () gcd ⁡ ( p , m ) = 1   ⇒   ∃ A , B ∈ Z ,   s . t .   A p + B m = 1 \gcd \left( p,m \right)=1\text{ }\Rightarrow \text{ }\exists A,B\in \mathbb{Z},\text{ }s.t.\text{ }Ap+Bm=1 gcd(p,m)=1  A,BZ, s.t. Ap+Bm=1,即
  A ( k m + r ) + B m = 1 ⇒ ( A k + B ) m + A r = 1 ⇒ gcd ⁡ ( r , m ) = 1 \begin{aligned} & \text{ }A\left( km+r \right)+Bm=1 \\ & \Rightarrow \left( Ak+B \right)m+Ar=1 \\ & \Rightarrow \gcd \left( r,m \right)=1 \\ \end{aligned}  A(km+r)+Bm=1(Ak+B)m+Ar=1gcd(r,m)=1
( ⇐ ) \left( \Leftarrow \right) () gcd ⁡ ( r , m ) = 1   ⇒   ∃ a , b ∈ Z ,   s . t .   a r + b m = 1 \gcd \left( r,m \right)=1\text{ }\Rightarrow \text{ }\exists a,b\in \mathbb{Z},\text{ }s.t.\text{ }ar+bm=1 gcd(r,m)=1  a,bZ, s.t. ar+bm=1
比对方程 ( A k + B ) m + A r = 1 \left( Ak+B \right)m+Ar=1 (Ak+B)m+Ar=1 a r + b m = 1 ar+bm=1 ar+bm=1,解
{ a = A k + B A = b   ⇒   { A = b ∈ Z B = a − b k ∈ Z \left\{ \begin{aligned} & a=Ak+B \\ & A=b \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }\left\{ \begin{aligned} & A=b \in \mathbb{Z} \\ & B=a-bk \in \mathbb{Z}\\ \end{aligned} \right. { a=Ak+BA=b  { A=bZB=abkZ
于是有
  b ( k m + r ) + ( a − b k ) m = 1 ⇒ b p + ( a − b k ) m = 1 ⇒ gcd ⁡ ( p , m ) = 1 ,   ∀ p ∈ K r \begin{aligned} & \text{ }b\left( km+r \right)+\left( a-bk \right)m=1 \\ & \Rightarrow bp+\left( a-bk \right)m=1 \\ & \Rightarrow \gcd \left( p,m \right)=1,\text{ }\forall p\in { {K}_{r}} \\ \end{aligned}  b(km+r)+(abk)m=1bp+(abk)m=1gcd(p,m)=1, pKr
所有 m m m互素的剩余类中,每类取一个元素,得到一个 m m m的既约剩余系

定理: 设 K r = { n ∈ Z : n ≡ r (   m o d   m ) } { {K}_{r}}=\left\{ n\in \mathbb{Z}:n\equiv r\left( \bmod m \right) \right\} Kr={ nZ:nr(modm)}是模 m m m的一个剩余类,则 K r 与 模 m 互 素 ⇔ ∃ p ∈ K r ,   s . t .   gcd ⁡ ( p , m ) = 1 { {K}_{r}}与模m互素\Leftrightarrow \exists p\in { {K}_{r}},\text{ }s.t.\text{ }\gcd \left( p,m \right)=1 KrmpKr, s.t. gcd(p,m)=1

证明

  1. ( ⇒ ) \left( \Rightarrow \right) () K r { {K}_{r}} Kr与模 m m m互素,根据与模 m m m互素的剩余类的定义,有
    ∀ p ∈ K r ,   gcd ⁡ ( p , m ) = 1 \forall p\in { {K}_{r}},\text{ }\gcd \left( p,m \right)=1 pKr, gcd(p,m)=1
  2. ( ⇐ ) \left( \Leftarrow \right) () p ∈ K r p\in { {K}_{r}} pKr,因此 ∃ k p ∈ Z ,   s . t . \exists { {k}_{p}}\in \mathbb{Z},\text{ }s.t. kpZ, s.t.
    p = k p m + r p={ {k}_{p}}m+r p=kpm+r
    ∃ p ∈ K r ,   s . t .   gcd ⁡ ( p , m ) = 1 \exists p\in { {K}_{r}},\text{ }s.t.\text{ }\gcd \left( p,m \right)=1 pKr, s.t. gcd(p,m)=1,因此 ∃ a , b ∈ Z ,   s . t . \exists a,b\in \mathbb{Z},\text{ }s.t. a,bZ, s.t.
      a p + b m = 1 ⇒ a ( k p m + r ) + b m = 1 ⇒ ( a k p + b ) m + a r = 1 \begin{aligned} &\text{ } ap+bm=1 \\ & \Rightarrow a\left( { {k}_{p}}m+r \right)+bm=1 \\ & \Rightarrow \left( a{ {k}_{p}}+b \right)m+ar=1 \\ \end{aligned}  ap+bm=1a(kpm+r)+bm=1(akp+b)m+ar=1
    ∀ ( k m + r ) ∈ K r ,   k ∈ Z \forall \left( km+r \right)\in { {K}_{r}},\text{ }k\in \mathbb{Z} (km+r)Kr, kZ,考虑
      gcd ⁡ ( k m + r , m ) = 1 ⇔ ∃ A , B ∈ Z ,   s . t .   A ( k m + r ) + B m = 1 ⇔ ( A k + B ) m + A r = 1 \begin{aligned} & \text{ }\gcd \left( km+r,m \right)=1 \\ & \Leftrightarrow \exists A,B\in \mathbb{Z},\text{ }s.t.\text{ }A\left( km+r \right)+Bm=1 \\ & \Leftrightarrow \left( Ak+B \right)m+Ar=1 \\ \end{aligned}  gcd(km+r,m)=1A,BZ, s.t. A(km+r)+Bm=1(Ak+B)m+Ar=1
    解方程组
    { A k + B = a k p + b A = a   ⇒   { A 0 = a ∈ Z B 0 = a ( k p − k ) + b ∈ Z \left\{ \begin{aligned} & Ak+B=a{ {k}_{p}}+b \\ & A=a \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }\left\{ \begin{aligned} & { {A}_{0}}=a\in \mathbb{Z} \\ & { {B}_{0}}=a\left( { {k}_{p}}-k \right)+b\in \mathbb{Z} \\ \end{aligned} \right. { Ak+B=akp+bA=a  { A0=aZB0=a(kpk)+bZ
    于是 ∃ A 0 , B 0 ∈ Z ,   s . t .   A 0 ( k m + r ) + B 0 m = 1   ⇒   gcd ⁡ ( k m + r , m ) = 1 \exists { {A}_{0}},{ {B}_{0}}\in \mathbb{Z},\text{ }s.t.\text{ }{ {A}_{0}}\left( km+r \right)+{ {B}_{0}}m=1\text{ }\Rightarrow \text{ }\gcd \left( km+r,m \right)=1 A0,B0Z, s.t. A0(km+r)+B0m=1  gcd(km+r,m)=1,由 k m + r km+r km+r的任意性和定义,剩余类 K r { {K}_{r}} Kr与模 m m m互素。

注记

  与模 m m m互素的剩余类 K r { {K}_{r}} Kr中的每个元素都与 m m m互素,但是 K r { {K}_{r}} Kr中不同的两个元素之间不一定互素,如与模5互素的剩余类 K 3 { {K}_{3}} K3,有
K 3 = { 3 , 8 , 13 , 18 , ⋯   } { {K}_{3}}=\left\{ 3,8,13,18,\cdots \right\} K3={ 3,8,13,18,}
3 , 18 ∈ K 3 3,18\in { {K}_{3}} 3,18K3,但是 gcd ⁡ ( 3 , 18 ) = 3 ≠ 1 \gcd \left( 3,18 \right)=3\ne 1 gcd(3,18)=3=1

定理: 设 K r = { n ∈ Z : n ≡ r (   m o d   m ) } { {K}_{r}}=\left\{ n\in \mathbb{Z}:n\equiv r\left( \bmod m \right) \right\} Kr={ nZ:nr(modm)}是模 m m m的一个剩余类,则 ∀ p , q ∈ K r \forall p,q\in { {K}_{r}} p,qKr, 成立 gcd ⁡ ( p , m ) = gcd ⁡ ( q , m ) . \gcd \left( p,m \right)=\gcd \left( q,m \right). gcd(p,m)=gcd(q,m).

证明
由于 p ≡ r ≡ q     m o d   m p\equiv r\equiv q\text{ }\bmod m prq modm, 因此 ∃ k ∈ Z \exists k\in \mathbb{Z} kZ, 成立
p = k m + q . p=km+q. p=km+q.
d = gcd ⁡ ( q , m ) d=\gcd \left( q,m \right) d=gcd(q,m), q = q 1 d ,   m = m 1 d q={ {q}_{1}}d,\text{ }m={ {m}_{1}}d q=q1d, m=m1d, 则有 gcd ⁡ ( q 1 , m 1 ) = 1 \gcd \left( { {q}_{1}},{ {m}_{1}} \right)=1 gcd(q1,m1)=1, 成立
gcd ⁡ ( p , m ) = gcd ⁡ ( k m + q , m ) = gcd ⁡ ( k m 1 d + q 1 d , m 1 d ) = d gcd ⁡ ( k m 1 + q 1 , m 1 ) . \gcd \left( p,m \right)=\gcd \left( km+q,m \right)=\gcd \left( k{ {m}_{1}}d+{ {q}_{1}}d,{ {m}_{1}}d \right)=d\gcd \left( k{ {m}_{1}}+{ {q}_{1}},{ {m}_{1}} \right). gcd(p,m)=gcd(km+q,m)=gcd(km1d+q1d,m1d)=dgcd(km1+q1,m1).
q 1 { {q}_{1}} q1 k m 1 + q 1 k{ {m}_{1}}+{ {q}_{1}} km1+q1在模 m 1 { {m}_{1}} m1的同一个既约剩余类中, 由本文前面的定理, 成立
gcd ⁡ ( k m 1 + q 1 , m 1 ) = gcd ⁡ ( q 1 , m 1 ) = 1. \gcd \left( k{ {m}_{1}}+{ {q}_{1}},{ {m}_{1}} \right)=\gcd \left( { {q}_{1}},{ {m}_{1}} \right)=1. gcd(km1+q1,m1)=gcd(q1,m1)=1.
因此成立
gcd ⁡ ( p , m ) = d = gcd ⁡ ( q , m ) . \gcd \left( p,m \right)=d=\gcd \left( q,m \right). gcd(p,m)=d=gcd(q,m).

定理: 与模 m m m互素的剩余类的个数是 φ ( m ) \varphi \left( m \right) φ(m)

证明
  设集合
S ( m ) = { n : 1 ≤ n ≤ m ,   gcd ⁡ ( n , m ) = 1 } T ( m ) = { 1 , 2 , ⋯   , m } \begin{aligned} & S\left( m \right)=\left\{ n:1\le n\le m,\text{ }\gcd \left( n,m \right)=1 \right\} \\ & T\left( m \right)=\left\{ 1,2,\cdots ,m \right\} \\ \end{aligned} S(m)={ n:1nm, gcd(n,m)=1}T(m)={ 1,2,,m}
∣ T ( m ) ∣ = m \left| T\left( m \right) \right|=m T(m)=m T ( m ) T\left( m \right) T(m)中的元素模 m m m两两不同余,于是 T ( m ) T\left( m \right) T(m)是模 m m m的一个完全剩余系,里面的元素来源遍历所有的剩余类 1 ∈ K 1 ,   2 ∈ K 2 ,   ⋯   , m ∈ K m = K 0 1\in { {K}_{1}},\text{ }2\in { {K}_{2}},\text{ }\cdots ,m\in { {K}_{m}}={ {K}_{0}} 1K1, 2K2, ,mKm=K0
  由于

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值