Zynq学习笔记--Vivado中自定义IP核

本文详细解析了在XilinxVivado中如何通过CreateandPackageIPWizard创建自定义IP核,重点介绍了AXI4Lite协议的写操作和读请求流程,包括参数设置、数据通道交互、地址处理和握手机制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. 概述

2. IP Packager 重要参数

2.1 参数说明

3. AXI4 Lite 写操作逻辑

3.1 写数据请求发起

3.2 写响应通道握手

3.3 从机锁存数据

3.4 地址和数据处理

3.5 地址空间详解

4. 写入和读取请求

4.1 寄存器写入逻辑

4.2 写操作握手

4.3 读请求发起

4.4 读操作握手

5. 读数据请求的处理逻辑

5.1 读请求的接收与响应

5.2 读响应的完成与握手

5.3 读取数据的选择与输出

5.4 读数据的锁存


1. 概述

  • 在Vivado中自定义IP核是一个常见的任务,特别是在开发Zynq平台时。
  • 自定义IP核可以通过Vivado设计套件中的工具来创建、打包和重用。通常,
  • 自定义IP核可以与DMA核相连,以实现数据传输和处理。
  • 在Vivado中创建自定义IP核涉及使用Create and Package IP wizard等工具,同时也可以使用AXI协议来定义IP核的接口。
  • 通过自定义IP核,开发人员可以实现特定功能的硬件加速,以提高系统性能和效率。

2. IP Packager 重要参数

2.1 参数说明

// Width of S_AXI data bus

parameter integer C_S_AXI_DATA_WIDTH = 32,

// Width of S_AXI address bus

parameter integer C_S_AXI_ADDR_WIDTH = 4

定义了432bit位宽的寄存器

 

// 主设备将启动对从设备的读写事务,基地址在此处作为参数指定。
parameter integer C_M_AXI_ADDR_WIDTH = 32,

// 主设备发出写数据并接受读数据,其中数据总线的宽度为C_M_AXI_DATA_WIDTH
parameter integer C_M_AXI_DATA_WIDTH = 32,

// 事务数量是指主设备将执行的写和读事务的数量

parameter integer C_M_TRANSACTIONS_NUM = 4,

3. AXI4 Lite 写操作逻辑

// 1.从写地址通道空闲 2.主写地址通道就绪 3.主写数据通道就绪 4.从aw_en就绪; 此条件为主机发起AXI写数据请求
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)

// 2.主写响应通道忙 <- 1.从写响应通道就绪; 此条件为写响应通道握手
if (S_AXI_BREADY &&
### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值