机器学习中 True Positives(真正例TP)、False Positives(假正例FP)、True Negatives(真负例TN)和 False Negatives(假负例FN)指什么

(原)(有误)

True、False正确检测还是错误检测(如果画出框的,还需考虑个阈值,IOU高于阈值并且分类正确的(box+class)才算正确检测,否则是错误检测)
Positive、Negative指画没画框

所以:
True Positives(真正例TP)是指正确检测,我们需要的目标,它画出框并且分类正确,交并比大于阈值的
False Positives(假正例FP)是指错误检测,不是我们需要的目标,它画出框,但交并比小于阈值或分类不正确
True Negatives(真负例TN)是指正确检测,不是我们要需的目标,它没画框
False Negatives(假负例FN)是指是错误检测,我们需要的目标,它没画框

20200206 (有误)

更新一下,可能上述表述有误
Positive、Negative指在没在ground truth中

True Positives(真正例TP)是指在ground truth中,它画出框的,标注正确的目标
False Positives(假正例FP)是指在ground truth中,它画出框的,标注错误的目标(就是标注错了)
True Negatives(真负例TN)是指不在ground truth中,它画出框,其实是正确的目标
False Negatives(假负例FN)是指不在ground truth中,它画出框,其实是错误的目标

20200206 (正解)

更新更新更新,貌似上面理解也不对:
参考文章:TP真阳性, FP假阳性, FN假阴性, TN真阴性

True、False表示预测是对或错

TP、True Positive 真阳性:预测为正,实际也为正

FP、False Positive 假阳性:预测为正,实际为负

FN、False Negative 假阴性:预测与负、实际为正

TN、True Negative 真阴性:预测为负、实际也为负。

也就是说,预测和实际一致则为真,预测和实际不一致则为假;如果预测出来是“正”的,则为“阳”,预测结果为 “负”,则为“阴”。
在这里插入图片描述

参考文章1:目标检测的评估指标mAP的那些事儿

参考文章2:目标检测中如何计算AP和mAP以及绘制P-R曲线以及SSD中如何修改代码来输出AP和绘制P-R曲线

### 关于二分类中的混淆矩阵标 在二分类问题中,模型预测的结果可以归纳到四个类别:真(True Positive, TP)真负(True Negative, TN)(False Positive, FP),以及负类(False Negative, FN)[^1]。 对于这些概念的理解有助于评估机器学习算法的表现。下面提供一段Python代码来计算并展示如何获取TPTNFPFN值: ```python from sklearn.metrics import confusion_matrix import numpy as np def calculate_confusion_metrics(y_true, y_pred): """ 计算混淆矩阵的各项标 参数: y_true : array-like of shape (n_samples,) 实际标签 y_pred : array-like of shape (n_samples,) 预测标签 返回: tp : int 确识别为样本的数量 tn : int 确识别为负样本的数量 fp : int 错误地被标记成样本的负样本数量 fn : int 被错误地标记成负样本的实际样本数量 """ cm = confusion_matrix(y_true, y_pred) # 提取混淆矩阵元素 tn, fp, fn, tp = cm.ravel() return tp, tn, fp, fn # 设我们有一个测试集的真实标签对应的预测结果 y_test = np.array([0, 1, 0, 1]) predictions = np.array([0, 1, 1, 0]) tp, tn, fp, fn = calculate_confusion_metrics(y_test, predictions) print(f'True Positives: {tp}') print(f'True Negatives: {tn}') print(f'False Positives: {fp}') print(f'False Negatives: {fn}') ``` 这段代码定义了一个`calculate_confusion_metrics()`函数用于接收真实标签(`y_true`)与预测标签(`y_pred`)作为输入,并返回相应的TPTNFPFN数值。这里使用了Scikit-Learn库中的`confusion_matrix`方法来进行实际计算[^2]。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dontla

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值