YOLOv10结构化通道剪枝【附代码】


前言

在深度学习模型的压缩和加速过程中,剪枝是一种极其重要且常用的技术。通过剪枝,可以有效地减少模型的参数数量和计算开销,从而提升推理速度和降低存储需求,同时,剪枝还能在保持模型性能的前提下,实现更高的计算效率和资源利用率,是优化深度学习模型不可或缺的关键手段。


视频效果

b站链接:YOLOv10轻量化|基于L1正则化的结构化通道剪枝

完整代码:YOLOv10结构化剪枝-模型轻量化


文章概述

本文介绍了如何训练自己的YOLOv10模型,并对其进行剪枝优化。具体步骤包括解析命令行参数以指定模型路径、剪枝策略和比例,定义剪枝函数和结构以找出可剪枝层并进行修剪,保存更新后的剪枝模型。接着,对剪枝后的模型进行fine-tune训练,最后对比剪枝前后的模型效果,分析参数量、计算量和FPS等指标的变化,评估剪枝优化的效果。


必要环境

  1. 配置yolov10环境 可参考往期博客
    地址:https://blog.csdn.net/Dora_blank/article/details/139302363?spm=1001.2014.3001.5502

  2. 安装torch-pruning 0.2.7版本,安装命令如下

    pip install torch-pruning==0.2.7
    
  3. 论文地址
    地址:https://arxiv.org/abs/1608.08710


一、训练原始模型

运行方法如下

python 1_yolov10-train.py --weights yolov10n.pt --data data.yaml --epoch 200 --batch 32 --workers 8

运行效果
在这里插入图片描述
正常训练时会打印模型在yaml文件中定义的网络结构

二、模型剪枝

1、 对训练好的原始模型将进行修剪

运行命令如下

python 2_yolov10-pruning.py --model_path yolov10n.pt --prune_type l1 --prune_ratio 0.55

运行效果
在这里插入图片描述

运行成功后会输出剪枝后的网络结构,以及剪枝前后模型的参数量对比

2、 关键代码讲解

1.命令行参数

import argparse

def parse_args():
    # 创建参数解析器
    parser = argparse.ArgumentParser(description="Prune a YOLOv10 model to reduce its size and complexity.")
    # 添加参数 --model_path,指定模型路径
    parser.add_argument("--model_path", type=str,
                        default=r"yolov10n.pt",
                        help="File path to the YOLOv10 model to be pruned. Default is 'yolov10n.pt'.")
    # 添加参数 --prune_type,指定剪枝策略
    parser.add_argument("--prune_type", type=str, default="l1", choices=["l1", "l2", "random"],
                        help="Pruning strategy to use. Options are: 'l1' for L1-norm pruning, 'l2' for L2-norm pruning, and 'random' for random pruning. Default is 'l1'.")
    # 添加参数 --prune_ratio,指定剪枝比例
    parser.add_argument("--prune_ratio", type=float, default=0.55, help="Ratio of the model to prune. Must be a float between 0 and 1. Default is 0.55.")
    # 解析参数
    args = parser.parse_args()
    return args

参数详解:

  • –model_path: 指定需要剪枝的模型路径
  • –prune_type: 指定剪枝策略,可选方案为 l1, l2, random,默认使用 l1策略
  • –prune_ratio: 指定剪枝比例,默认值为0.55,表示对定义的卷积层减掉55%的通道数

2. 定义剪枝函数

def prune_model(model, prune_type, prune_ratio, input_tensor):
    strategy = {
        'l1': tp.strategy.L1Strategy(),
        'l2': tp.strategy.L2Strategy(),
        'random': tp.strategy.RandomStrategy()
    }.get(prune_type, tp.strategy.RandomStrategy())

    dependency_graph = tp.DependencyGraph().build_dependency(model, example_inputs=input_tensor)
    included_layers = get_included_layers(model)

    original_params = tp.utils.count_params(model)
    pruning_plans = [
        dependency_graph.get_pruning_plan(m, tp.prune_conv, idxs=strategy(m.weight, amount=prune_ratio))
        for m in model.modules() if isinstance(m, nn.Conv2d) and m in included_layers
    ]

关键步骤详解:

  • 策略选择 依据 prune_type 参数,选择适合的剪枝策略,如果 prune_type 并非预定义的值,则默认采用L1策略来进行剪枝操作

  • 构建依赖图 调用 tp.DependencyGraph().build_dependency 函数,构建模型的依赖关系图,以便在后续步骤中能够顺利进行剪枝操作

  • 获取包含的层 通过 get_included_layers 函数,识别并获取需要进行剪枝的层,这些层主要包括模型中的 nn.Conv2d 层

  • 计算原始参数数量 利用 tp.utils.count_params 函数,计算并记录模型在剪枝前的参数总量,以便后续进行对比和评估

  • 制定剪枝计划 针对每一个需要剪枝的 nn.Conv2d 层,使用相应的剪枝策略来计算应该剪枝的索引,并根据这些索引生成详细的剪枝计划

3. 定义需要修剪的修剪结构

从指定模型中, 找出所有可以进行剪枝操作的层, 并将它们添加到 included_layers 列表中

def get_included_layers(model):
    included_layers = []  # 用于存储所包含的层

    # 遍历模型中的每一层
    for layer in model.model:
        if isinstance(layer, Conv):  # 检查是否为卷积层
            included_layers.append(layer.conv)  # 将卷积层添加到列表中
			...

        elif isinstance(layer, v10Detect):  # 检查是否为v10Detect层
            included_layers.extend([
                layer.cv2[i][j].conv
                for i in range(3)
                for j in range(2)
            ])
            ...
            # 省略其他层处理逻辑
    return included_layers

关键模块详解:

  • model: 传入yolov10模型。函数将遍历这个模型中的所有层,以识别哪些部分可以进行剪枝操作
  • included_layers: 用于存储那些能够进行剪枝的层,函数会将这些层逐一识别并添加到这个列表中
  • 定义模型中不同类型的层。函数会根据每个层的具体类型采取相应的处理方法,并将可以剪枝的部分添加到 included_layers 列表中

4. 保存更新后的模型

剪枝操作完成后,我们需要将剪枝后的模型保存,以便后续使用

def save_pruned_model(model, prune_type):
    param_dict = {
        'model': model,
    }
    torch.save(param_dict, f'prune_model_{prune_type}.pt')

参数详解:

  • model:传入剪枝后的模型
  • prune_type:定义剪枝类型,用于命名保存的模型文件

5. 主函数

定义主函数,整合上述各个步骤,实现完整的剪枝流程

def main():
    args = parse_args()
    # 加载模型
    yolov10 = YOLOv10(args.model_path)
    # 使模型参数可训练
    for para in model.parameters():
        para.requires_grad = True
    # 执行剪枝
    pruned_model, original_params = prune_model(model, args.prune_type, args.prune_ratio, input_tensor)
    # 保存更新后的模型
    save_pruned_model(pruned_model, args.prune_type)
    pruned_params = tp.utils.count_params(model)
    pruned_model(input_tensor)
    percentage_reduction = ((original_params - pruned_params) / original_params) * 100
    logger.info(
        f"Params: {original_params * 4 / 1024 / 1024:.2f} MB => {pruned_params * 4 / 1024 / 1024:.2f} MB (Reduction: {percentage_reduction:.2f}%)")

关键模块解读:

  • parse_args():解析命令行参数。
  • YOLOv10(args.model_path):加载YOLOv10模型
  • prune_model():执行剪枝操作
  • save_pruned_model():保存剪枝后的模型
  • 计算剪枝前后参数的变化,并打印模型信息和参数减少的百分比

三、剪枝后的训练

运行命令如下

python 3_yolov10-finetune.py --finetune --epochs 200 --batch_size 32

运行效果
在这里插入图片描述可以看到剪枝后训练不会打印模型在yaml文件中定义的网络结构


四、剪枝前后效果对比

剪枝前:
在这里插入图片描述
Params:10.36MB GFLOPs:8.43G MACs:4G FPS稳定在35-45帧之间 各别时候不稳定会蹦到50-60或20-30左右

剪枝后:
在这里插入图片描述
Params:5.19MB GFLOPs:4.02G MACs:4G FPS稳定在45-55帧之间 各别时候不稳定会蹦到60或20-30左右

整体来看剪枝后参数量、计算量、复杂度都降低了,提升了推理速度,但与此同时模型精度也会有一定程度的下降


总结

本期博客就到这里啦,喜欢的小伙伴们可以点点关注,感谢!

最近经常在b站上更新一些有关目标检测的视频,大家感兴趣可以来看看 https://b23.tv/1upjbcG

学习交流群:995760755

  • 29
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

[空--白]

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值