6.常用统计分析方法——多重线性回归

目录

多重线性回归

自变量的筛选和最优模型:

一、自变量筛选的统计学标准:

二、多重共线性

 三、哑变量设置

四、交互效应

五、回归诊断


多重线性回归

多重线性回归模型(Multiple Linear Regression Model)即描述因变量Y如何随多个自变量X的改变而改变。假定对n例观察对象逐一测定了因变量Y与m个自变量X1X2、…、Xm的数值,多重线性回归模型的一般形式为:

\textrm{Y}=\beta _{0}+\beta_{1}X_{1}+\beta _{2}X_{2}+\cdot \cdot \cdot +\beta _{m}X_{m}+e

式中β0为常数项,又称截距。β1β2,…,βm称为偏回归系数(partial regression coefficient)或简称回归系数。

e则是去除m个自变量对Y的影响后的随机误差(即残差)

一、多重线性回归的条件:

  • 线性
  • 独立
  • 正态
  • 等方差

二、多重线性回归分析一般可分为两个步骤:

1. 拟合多重线性回归方程

使用lm(因变量~自变量1+自变量2+自变量3...+自变量n,data=mydata)的形成拟合线性回归方程。

2. 模型检验及评价

复相关系数

R=\sqrt{R^{2}}:称为复相关系数(multiple correlation coefficient),可用来度量因变量Y与多个自变量间的线性相关程度,亦即观察值Y与估计值之间的相关程度

如果只有一个自变量时,R=\left | r \right |r是简单相关系数。

案例:ISwR包中自带数据集cystfibr是25例囊性纤维化患者的基本信息和肺功能信息。其中包含的变量有性别、年龄、身高、体重,BMI,用力呼气量(fev1),残气量(rv),功能性残气量(frc),最大肺活量(tlc),最大呼气压力(pemax)。

library(ISwR)
data(cystfibr)
str(cystfibr)#查看数据结构类型
#分类变量因子化
cystfibr$sex <- factor(cystfibr$sex,labels = c("male","female"))

因为结局指标肺功能的参数较多,现选择其中fev1作为结局的分析指标。

cor(cystfibr[,6:10])

可以发现肺功能指标之间存在较高的相关性,因此选择其中一个作为分析。

fit1 <- lm(fev1 ~ age + sex + height + weight + bmp, data = cystfibr)
#线性拟合
summary(fit1)

多重线性的分析结果可以F

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值