目录
多重线性回归
多重线性回归模型(Multiple Linear Regression Model)即描述因变量Y如何随多个自变量X的改变而改变。假定对n例观察对象逐一测定了因变量Y与m个自变量X1、X2、…、Xm的数值,多重线性回归模型的一般形式为:
式中β0为常数项,又称截距。β1、β2,…,βm称为偏回归系数(partial regression coefficient)或简称回归系数。
e则是去除m个自变量对Y的影响后的随机误差(即残差)。
一、多重线性回归的条件:
- 线性
- 独立
- 正态
- 等方差
二、多重线性回归分析一般可分为两个步骤:
1. 拟合多重线性回归方程
使用lm(因变量~自变量1+自变量2+自变量3...+自变量n,data=mydata)的形成拟合线性回归方程。
2. 模型检验及评价
复相关系数
R=:称为复相关系数(multiple correlation coefficient),可用来度量因变量Y与多个自变量间的线性相关程度,亦即观察值Y与估计值之间的相关程度
如果只有一个自变量时,,r是简单相关系数。
案例:ISwR包中自带数据集cystfibr是25例囊性纤维化患者的基本信息和肺功能信息。其中包含的变量有性别、年龄、身高、体重,BMI,用力呼气量(fev1),残气量(rv),功能性残气量(frc),最大肺活量(tlc),最大呼气压力(pemax)。
library(ISwR)
data(cystfibr)
str(cystfibr)#查看数据结构类型
#分类变量因子化
cystfibr$sex <- factor(cystfibr$sex,labels = c("male","female"))
因为结局指标肺功能的参数较多,现选择其中fev1作为结局的分析指标。
cor(cystfibr[,6:10])
可以发现肺功能指标之间存在较高的相关性,因此选择其中一个作为分析。
fit1 <- lm(fev1 ~ age + sex + height + weight + bmp, data = cystfibr)
#线性拟合
summary(fit1)
多重线性的分析结果可以F