统计学习 | 多重线性回归 Multiple Linear Regression

本文介绍了多重线性回归的概念及其在分析多个自变量与一个因变量关系中的应用。讨论了回归模型的假设,包括方差齐性、观察独立性和正态性等,并提醒注意自变量间的相关性。通过R语言展示了如何执行和解读多重线性回归,解释了如何利用该方法控制混淆变量,并提供了一个实际案例研究,探讨肥胖与大脑结构的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概念

回归模型通过对观测数据拟合一条直线来描述变量之间的关系。回归估计一个因变量如何随着自变量的变化而变化。

多重线性回归是用来估计两个或多个自变量和一个因变量之间的关系。

!!!此处注意区分

1)简单(simple)线性回归 :1个自变量,1个因变量

2)多因素(multivariable)或多重(multiple)线性回归:多个自变量,1个因变量

3)多元或多变量(multivariate)线性回归:1个自变量,多个因变量

多重线性回归的假设

方差齐性(同方差) : 我们的预测误差的大小在自变量的值之间没有显著的变化。

观察的独立性: 数据集中的观察数据采用统计学上有效的方法收集,变量之间没有隐藏的关系。

在多线性回归模型中,有可能一些自变量实际上是相互关联的,所以在开发回归模型之前检查这些是很重要的。如果两个自变量的相关性太高(r2 > 0.6) ,那么在回归模型中只能使用其中的一个。

正态性: 数据服从正态分布。

线性: 通过数据点的最佳拟合线是一条直线,而不是一条曲线或某种分组因子。

如何执行多重线性回归

多重线性回归的公式如下:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值