实用技巧——亚组分析表格快速绘制

本文详细介绍了在生存分析中如何处理连续变量(如年龄、Towesnd指数和久坐时间)为分类变量,使用因子化方法,以及如何通过Cox回归进行亚组分析,包括HR、95%CI和P值的计算,以及数据的整理和展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

可能不是最方便的方法,但是自己学习过程总结的。如果有更好的方法欢迎各位大佬们补充!!!

以生存分析的材料为例:

1. 变量处理

按照亚组分析的变量创建一个新的分组变量,将连续型变量按照事先设定的阈值调整为分类变量。

#将连续型变量分类处理
#年龄
mydata$Age.group <- ifelse(mydata$Age<=60,1,
                           ifelse(mydata$Age>60,2,NA))
mydata$Age.group <- factor(mydata$Age.group,levels = c(1,2),labels = c("<=60",">60"))
table(mydata$Age.group)
#Towsend指数
summary(mydata$Townsend_deprivation_index)
mydata$Townsend_deprivation_index.group <- ifelse(mydata$Townsend_deprivation_index<(-2.3),1,
                                                  ifelse(mydata$Townsend_deprivation_index>=(-2.3),2,NA))
mydata$Townsend_deprivation_index.group <- factor(mydata$Townsend_deprivation_index.group,levels = c(1,2),labels = c("low","high"))
table(mydata$Townsend_deprivation_index.group)

#久坐时间
summary(mydata$Sedentary_hours)
mydata$Sedentary_hours.group <- ifelse(mydata$Sedentary_hours<4.5,1,
                                       ifelse(mydata$Sedentary_hours>=4.5,2,NA))
mydata$Sedentary_hours.group <- factor(mydata$Sedentary_hours.group,levels = c(1,2),labels = c("low","high"))
table(mydata$Sedentary_hours.group)

例如,我将上述的变量,年龄,Towsend指数和久坐时间进行的分类处理,并对其进行了因子化

2. 产生新的数据框

赋值到一个新的数据框,便于保留原始数据,挑选出自己需要的列,简化数据表格

library(dplyr)
names(mydata)
df <- mydata%>%
  select(patientID,Age,Townsend_deprivation_index,activity,Sedentary_hours,Total_sugar,Energy,Fat,Fish,red_meat,
         vegefruit_sum,Insulin_user,Lipid_lowering_drugs_user,Aspirin_user,futime,fustat,SSBs_category,ASBs_category,PJs_category,
         Sex,Age.group,Ethnic,smoking_status,Alcohol_intake_frequency,BMI.group,Townsend_deprivation_index.group,
         Sedentary_hours.group,sleep_duration_group,physical_activity_group,diabetes,Antihypertensive_drugs_user)


s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值