meta分析stata教程

教程内容包含分类变量、连续变量、单个率的Meta分析。

一、分类变量

1.数据输入格式:

注:“a”代表试验组阳性数量,“b”代表试验组阴性数量,“c”代表对照组阳性数量,“d”代表对照组阴性数量。(代码中a、b、c、d同)

2. 森林图代码:metan a b c d, counts or fixed group1(对照组名字) group2(治疗组名字) lcols(Subjects) texts(110)

森林图亚组分析代码:metan a b c d, counts or fixed group1(对照组名字) group2(治疗组名字) lcols(Subjects) texts(110) by(subunit)

注:or代表比值比;fixed代表固定效应模型,可换成random随机效应模型;texts代表图的大小,里面数值可自行设置;by()是亚组分析的代码,subunit是自定义的亚组列的名字,可自行设置,和a,b,c,d的类型及设置一样。具体见下图。

3.敏感性分析:metaninf a b c d, label(namevar = Subjects) fixed or

4.漏斗图metafunnel _ES _selogES

5.发表偏移

Egger法

gen logor=log(a/b)/(c/d)

gen selogor=sqrt((1/a)+(1/b)+(1/c)+(1/d))

metabias logor selogor, egger

Begg法

gen logor=log(a/b)/(c/d)

gen selogor=sqrt((1/a)+(1/b)+(1/c)+(1/d))

metabias logor selogor, begg

二、连续变量

1.数据输入格式:

注:“tn”代表试验组样本量,“tmean”代表试验组均值,“tsd”代表试验组方差,“cn”代表对照组样本量,“cmean”代表对照组均值,“csd”代表对照组方差。(代码中同)

2.森林图代码:metan tn tmean tsd cn cmean csd, label(namevar=studies) random

森林图亚组分析代码:metan tn tmean tsd cn cmean csd, label(namevar=studies) random cohen by(subunit)

metan tn tmean tsd cn cmean csd, label(namevar=studies) fixed cohen by(subunit)

注:random代表随机效应模型,可换成fixed固定效应模型;by()是亚组分析的代码,subunit是自定义的亚组列的名字,可自行设置。

3.漏斗图metafunnel _ES _selogES

三、单个率的meta分析

1.数据输入格式

2.stata代码

stata代码:森林图:gen rate=患病人数/总人数;

gen ser=sqrt(rate*(1-rate)/总)

metan rate ser, label(namevar=studies) random

敏感性分析:metaninf rate ser, label(namevar = studies) random or

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值