几何分布 Geometric Distribution

目录

Bernouilli 随机变量

几何分布 Geometric Distribution

无记忆性 Memoryless Property


  • Bernouilli 随机变量

    • 定义:
      • An individual trial has only two possible outcomes.
      • 一个实验只有两个可能的结果,可以分为成功和失败。
  • 几何分布 Geometric Distribution

    • 定义:进行独立的Bernouilli实验,直到第k次才成功的概率,且每次实验成功概率均为p(失败的概率为q=1-p)。
    • 表达式:p(y)=q^{y-1}p, y = 1, 2, 3..., 0\leq p\leq1
    • 期望:\mu = E[Y]= \frac{1}{p}
    • 方差:\sigma^2 = V(Y) = \frac{1-p}{p^2}
  • 无记忆性 Memoryless Property

    • 引入:一支笔使用a小时后还能使用b小时的概率=一支新笔能使用b小时的概率。
    • 如果一个概率分布具有无记忆性的特征,那么它满足:P(Y>a+b|Y>a)=P(Y>b)
    • 证明:

P(Y>a+b)=\sum_{a+b+1}^{\infty}pq^{y-1}=p\sum_{a+b+1}^{\infty}q^{y-1}=p(q^{a+b}+...q^\infty)=pq^{a+b}\frac{1-q^\infty}{1-q}\\ \because 0<q<1, \therefore \lim_{t \rightarrow \infty}q^t=0, \therefore P(Y>a+b)=pq^{a+b}\frac{1}{p}=q^{a+b}\\ \rightarrow P(Y>a)=q^a, P(Y>b)=q^b\\ P(Y>a+b|Y>a)=\frac{P(Y>a+b\cap Y>a)}{P(Y>a)}=\frac{P(Y>a+b)}{P(Y>a)}=q^b=P(Y>b)

二项分布和几何分布概率论中两种常见的离散随机变量的分布,它们在实际应用中有各自的特性和用途。 **1. 二项分布(Binomial Distribution)**: - 它描述的是在一系列独立的伯努利试验中,成功事件发生的次数的随机变量。比如,抛硬币n次,正面朝上k次的概率就符合二项分布。 - 参数有两个:试验次数n(固定)和每次试验成功的概率p(也可能是未知的),记作X~B(n, p)。 - 总体结果可以总结为:P(X=k) = C(n, k) * p^k * (1-p)^(n-k),其中C(n, k)是组合数,表示从n次中取k次的方法数。 **2. 几何分布Geometric Distribution)**: - 几何分布更关注单次试验成功的累积概率,即直到第一次成功的次数,比如抛硬币直到出现正面。 - 这里的随机变量Y表示第一次成功的试验次数,而试验总是独立且有相同的失败概率p。 - 参数只有一个:每次试验成功的概率p(不考虑试验次数)。 - 几何分布的概率质量函数是:P(Y=k) = p * (1-p)^(k-1),对于k=1,2,3,... **区别**: - **试验次数**:二项分布涉及固定次数的试验,而几何分布关注的是首次成功的次数,次数可变。 - **成功定义**:二项分布是固定数量的成功事件,如硬币正面次数;几何分布关注的是首次成功事件发生前的尝试次数。 - **概率计算**:二项分布在每个可能的结果上都有一个独立的概率;几何分布则是在每次试验的失败累积后获得成功概率。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值