多元概率分布 Multivariate Probability Distributions

本文介绍了二元和多元概率分布的概念,包括离散和连续随机变量的联合分布函数和概率密度函数。讨论了边缘概率分布和条件概率分布的重要性,以及如何计算。此外,还涉及独立随机变量的定义,协方差和相关系数在衡量变量间关系中的作用。
摘要由CSDN通过智能技术生成

目录

二元和多元概率分布 Bivariate and Multivariate Probability Distributions

这些联合分布的意义是什么?

离散随机变量

连续随机变量

联合分布函数性质

边缘概率分布和条件概率分布 Marginal and Conditional Probability Distributions

边缘概率分布和条件概率分布的意义是什么?

边缘分布的定义 Marginal probability and density functions

条件离散概率函数的定义 Conditional discrete probability function

条件分布函数的定义 Conditional distribution function

条件密度的定义 Conditional density 

独立随机变量 Independent Random Variables

随机变量的函数的期望值 The Expected Value of a Function of Random Variables

一些计算用的定理 Special Theorems

协方差 The Covariance of two random variables 

协方差的定义

相关系数的定义

随机变量线性方程的期望和方差 The Expected Value and Variance of Linear Functions of Random Variables

条件期望 Conditional Expectations


  • 二元和多元概率分布 Bivariate and Multivariate Probability Distributions

    • 这些联合分布的意义是什么?       

      • 计算同时满足两个或多个条件的概率。
    • 离散随机变量

      • Y1和Y2是离散随机变量,那么Y1和Y2的联合或二元概率函数(joint or bivariate probability function)是p(y_1, y_2)=P(Y_1=y_1, Y_2=y_2), -\infty <y_1<\infty, -\infty<y_2<\infty
      • 联合概率函数的两个性质:
        • 对于所有y1和y2, p(y_1, y_2)\geq 0
        • \sum_{y_1, y_2}p(y_1, y_2)=1
      • Y1和Y2是离散随机变量,那么Y1和Y2的联合或二元分布函数(joint or bivariate distribution function)是F(y_1, y_2)=P(Y_1\leq y_1, Y_2\leq y_2)=\sum_{t_1 \leq y_1}\sum_{t_2 \leq y_2} p(t_1, t_2), -\infty <y_1<\infty, -\infty<y_2<\infty
    • 连续随机变量

      • Y1和Y2是连续随机变量,其联合分布函数是F(y1, y2)。若存在一个非负函数f(y1, y2)满足F(y_1, y_2)=\int_{-\infty}^{y_1}\int_{-\infty}^{y_2}f(t_1, t_2)dt_2dt_1, -\infty<y_1<\infty, -\infty<y_2<\infty,则称Y1和Y2是联合连续随机变量,f(y1, y2)是联合概率密度函数(joint probability density function)。
      • 联合pdf性质:
        • 对于所有y1和y2, f(y_1, y_2)\geq 0
        • \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(y_1, y_2)dy_1dy_2=1
    • 联合分布函数性质

      • F(-\infty,-\infty)=F(-\infty, y_2)=F(y_1, -\infty)=0
      • F(\infty, \infty)=1
      • 如果y1*>=y1以及y2*>=y2,那么F(y^*_1, y^*_2)-F(y^*_1, y_2)-F(y_1, y^*_2)+F(y_1, y_2) \geq0
  • 边缘概率分布和条件概率分布 Marginal and Conditional Probability Distributions

    • 边缘概率分布和条件概率分布的意义是什么?

    • 边缘分布的定义 Marginal probability and density functions

    • 条件离散概率函数的定义 Conditional discrete probability function

    • 条件分布函数的定义 Conditional distribution function

    • 条件密度的定义 Conditional density 

  • 独立随机变量 Independent Random Variables

    • Y1和Y2独立的充要条件:
      • F(y_1, y_2)=F(y_1)F(y_2)
      • p(y_1, y_2)=p(y_1)p(y_2) 或者 f(y_1, y_2)=f(y_1)f(y_2)
      • 特例:优点是不用去算具体的marginal density, f(y_1, y_2)=g(y_1)h(y_2)
        • 具体:
  • 随机变量的函数的期望值 The Expected Value of a Function of Random Variables

  • 一些计算用的定理 Special Theorems

    • E(c)=c
    • E[cg(Y_1, Y_2)]=cE[g(Y_1, Y_2)]
    • E[g_1(Y_1, Y_2)+...+g_k(Y_1, Y_2)]=E[g_1(Y_1, Y_2)]+...+E[g_k(Y_1, Y_2)]
    • E[g(Y_1) h(Y_2)]=E[g(Y_1)]E[h(Y_2)]
  • 协方差 The Covariance of two random variables 

    • 协方差的定义

      • Y1和Y2是两个随机变量,其期望值分别为μ1和μ2,那么它们的协方差(covariance)的定义是Cov(Y_1, Y_2) = E[(Y_1 -\mu_1)(Y_2- \mu_2)]=E(Y_1Y_2) - E(Y_1)E(Y_2).
        • 绝对值越大越相关。
        • 正的就是正相关,负的就是负相关。
        • 0就是不相关 -> Y1,Y2是独立的。
    • 相关系数的定义

      • 协方差标准化后得到相关系数(correlation coefficients)\rho = \frac{Cov(Y_1, Y_2)}{\sigma_1\sigma_2},值域是[-1, 1]。
        • 绝对值越大越相关。
        • 正的就是正相关,负的就是负相关。
        • 0就是不相关 -> Y1,Y2是独立的。
  • 随机变量线性方程的期望和方差 The Expected Value and Variance of Linear Functions of Random Variables

  • 条件期望 Conditional Expectations

有用的链接:

1. 联合概率、边缘概率、条件概率 - 知乎 (zhihu.com)

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值