Python数据可视化(Numpy_1_Numpy的介绍及创建)

本文介绍了NumPy的基础知识,包括如何创建和操作ndarray。讲解了如何通过Python列表创建ndarray,以及如何使用内置函数如np.zeros(), np.ones(), np.full(), np.eye()和np.diag()生成特定类型的数组。还探讨了数组的形状、数据类型以及如何保存和加载数组。最后,讨论了随机数生成和数组重塑等操作。
摘要由CSDN通过智能技术生成

数据可视化(一)

Numpy

NumPy 是 Numerical Python 的简称,它是 Python 中的科学计算基本软件包。NumPy 为 Python 提供了大量数学库,使我们能够高效地进行数字计算。
NumPy 的核心是 ndarray,其中 nd 表示 n 维。ndarray 是一个多维数组,其中的所有元素类型都一样。换句话说,ndarray 是一个形状可以多样,并且可以存储数字或字符串的网格。在很多机器学习问题中,你通常都会发现需要以多种不同的方式使用 ndarray。例如,你可能会使用 ndarray 存储一个图像的像素值,然后将该图像馈送到神经网络中以进行图像分类。

import numpy as np

我们可以通过多种方式在 NumPy 中创建 ndarray。
在此部分,我们将通过向 NumPy np.array() 函数提供 Python 列表创建 ndarray。对于初学者来说,这种方法可能会造成困惑,请务必注意,np.array() 不是类,它只是一个返回 ndarray 的函数。要阐明的是,这些课程中用到的示例都将使用简单的小型 ndarray。我们开始创建一维 ndarray 吧

# We import NumPy into Python
import numpy as np

# We create a 1D ndarray that contains only integers
x = np.array([1, 2, 3, 4, 5])

# Let's print the ndarray we just created using the print() command
print('x = ', x)

python x = [1 2 3 4 5]

Numpy 数据类型

请务必注意,Python 列表和 ndarray 之间的最大区别是:与 Python 列表不同的是,ndarray 的所有元素都必须类型相同。因此,虽然我们可以同时使用整数和字符串创建 Python 列表,但是无法在 ndarray 中同时使用这两种类型。如果向 np.array() 函数提供同时具有整数和字符串的 Python 列表,NumPy 会将所有元素解析为字符串。我们可以在下面的示例中见到这种情况

# We create a rank 1 ndarray from a Python list that contains integers and strings
x = np.array([1, 2, 'World'])

# We print the ndarray
print()
print('x = ', x)
print()

# We print information about x
print('x has dimensions:', x.shape)
print('x is an object of type:', type(x))
print('The elements in x are of type:', x.dtype)
x = ['1' '2' 'World']

x has dimensions: (3,)
x is an object of type: 'numpy.ndarray' 类
The elements in x are of type: U21

可以看出,虽然 Python 列表具有不同的数据类型,但是 x 中的元素类型都一样,即具有 21 个字符的 Unicode 字符串。在 NumPy 简介的剩余部分,我们将不使用存储字符串的 ndarray,但是请注意,ndarray 也可以存储字符串。

现在看看如何利用嵌套 Python 列表创建秩为 2 的 ndarray。

# We create a rank 2 ndarray that only contains integers
Y = np.array([[1,2,3],[4,5,6],[7,8,9], [10,11,12]])

# We print Y
print()
print('Y = \n', Y)
print()

# We print information about Y
print('Y has dimensions:', Y.shape)
print('Y has a total of', Y.size, 'elements')
print('Y is an object of type:', type(Y))
print('The elements in Y are of type:', Y.dtype)
Y =
[[ 1 2 3]
 [ 4 5 6]
 [ 7 8 9]
 [10 11 12]]
 Y has dimensions: (4, 3)
Y has a total of 12 elements
Y is an object of type: class 'numpy.ndarray'
The elements in Y are of type: int64

可以看出,现在 shape 属性返回元组 (4,3),告诉我们 Y 的秩为 2,有 4 行 3 列。.size 属性告诉我们 Y 共有 12 个元素。

注意,当 NumPy 创建 ndarray 时,它会自动根据用于创建 ndarray 的元素的类型为其分配 dtype。到目前为止,我们只创建了包含整数和字符串的 ndarray。我们发现,当我们创建只有整数的 ndarray 时,NumPy 将自动为其元素分配 dtype int64。我们来看看当我们创建具有浮点数和整数的 ndarray 时,会发生什么。

# We create a rank 1 ndarray that contains integers
x = np.array([1,2,3])

# We create a rank 1 ndarray that contains floats
y = np.array([1.0,2.0,3.0])

# We create a rank 1 ndarray that contains integers and floats
z = np.array([1, 2.5, 4])

# We print the dtype of each ndarray
print('The elements in x are of type:', x.dtype)
print('The elements in y are of type:', y.dtype)
print('The elements in z are of type:', z.dtype)
The elements in x are of type: int64
The elements in y are of type: float64
The elements in z are of type: float64

可以看出,当我们创建只有浮点数的 ndarray 时,NumPy 将元素当做 64 位浮点数 (float64) 存储在内存中。但是,当我们创建同时包含浮点数和整数的 ndarray 时,就像上面的 z ndarray,NumPy 也会为其元素分配 float64 dtype。这叫做向上转型。因为 ndarray 的所有元素都必须类型相同,因此在这种情况下,NumPy 将 z 中的整数向上转型为浮点数,避免在进行数学计算时丢失精度。

虽然 NumPy 自动为 ndarray 选择 dtype,但是 NumPy 也允许你指定要为 ndarray 的元素分配的特定 dtype。当你在 np.array() 函数中创建 ndarray 时,可以使用关键字 dtype 指定 dtype。我们来看一个示例:

# We create a rank 1 ndarray of floats but set the dtype to int64
x = np.array([1.5, 2.2, 3.7, 4.0, 5.9], dtype = np.int64)

# We print x
print()
print('x = ', x)
print()

# We print the dtype x
print('The elements in x are of type:', x.dtype)
x = [1 2 3 4 5]

The elements in x are of type: int64

以看出,虽然用浮点数创建了 ndarray,但是通过将 dtype 指定为 int64,NumPy 通过去除小数将浮点数转换成了整数。如果你不希望 NumPy 意外地选择错误的数据类型,或者你只希望达到一定的计算精度,从而节省内存,则指定 ndarray 的数据类型很有用。

创建 ndarray 后,你可能需要将其保存到文件中,以便以后读取该文件或供另一个程序使用。NumPy 提供了一种将数组保存到文件中以供日后使用的方式。我们来看看操作方式。

# We create a rank 1 ndarray
x = np.array([1, 2, 3, 4, 5])

# We save x into the current directory as 
np.save('my_array', x)

上述代码将 x ndarray 保存到叫做 my_array.npy 的文件中。你可以使用 load() 函数将保存的 ndarray 加载到变量中。

# We load the saved array from our current directory into variable y
y = np.load('my_array.npy')

# We print y
print()
print('y = ', y)
print()

# We print information about the ndarray we loaded
print('y is an object of type:', type(y))
print('The elements in y are of type:', y.dtype)
y = [1 2 3 4 5]

y is an object of type: class 'numpy.ndarray'
The elements in y are of type: int64

从文件中加载数组时,确保包含文件名和扩展名 .npy,否则将出错。

使用内置函数创建 ndarray

我们先创建一个具有指定形状的 ndarray,其中的元素全是 0。为此,我们可以使用 np.zeros() 函数。函数 np.zeros(shape) 会创建一个全是 0 并且为给定形状的 ndarray。因此,例如如果你想创建一个秩为 2 的数组,其中包含 3 行和 4 列,你将以 (行, 列) 的形式将该形状传递给函数,如以下示例所示:

# We create a 3 x 4 ndarray full of zeros. 
X = np.zeros((3,4))

# We print X
print()
print('X = \n', X)
print()

# We print information about X
print('X has dimensions:', X.shape)
print('X is an object of type:', type(X))
print('The elements in X are of type:', X.dtype)
X =
[[ 0. 0. 0. 0.]
 [ 0. 0. 0. 0.]
 [ 0. 0. 0. 0.]]

X has dimensions: (3, 4)
X is an object of type: class 'numpy.ndarray'
The elements in X are of type: float64

可以看出,np.zeros() 函数默认地创建一个 dtype 为 float64 的数组。你可以使用关键字 dtype 更改数据类型。

同样,我们可以创建一个具有指定形状的 ndarray,其中的元素全是 1。为此,我们可以使用 np.ones() 函数。和 np.zeros() 函数一样,np.ones() 函数会用一个参数来指定你要创建的 ndarray 的形状。

我们还可以创建一个具有指定形状的 ndarray,其中的元素全是我们想指定的任何数字。为此,我们可以使用 np.full() 函数。np.full(shape, constant value) 函数有两个参数。第一个参数是你要创建的 ndarray 的形状,第二个参数是你要向数组中填充的常数值。我们来看一个示例:

# We create a 2 x 3 ndarray full of fives. 
X = np.full((2,3), 5) 

# We print X
print()
print('X = \n', X)
print()
X =
[[5 5 5]
 [5 5 5]]

稍后你将发现,线性代数中的基本数组是单位矩阵。单位矩阵是主对角线上全是 1,其他位置全是 0 的方形矩阵。函数 np.eye(N) 会创建一个对应于单位矩阵的方形 N x N ndarray。因为所有单位矩阵都是方形,因此,np.eye() 函数仅接受一个整数作为参数。我们来看一个示例:

# We create a 5 x 5 Identity matrix. 
X = np.eye(5)

# We print X
print()
print('X = \n', X)
print()
X =
[[ 1. 0. 0. 0. 0.]
 [ 0. 1. 0. 0. 0.]
 [ 0. 0. 1. 0. 0.]
 [ 0. 0. 0. 1. 0.]
 [ 0. 0. 0. 0. 1.]]

我们还可以使用 np.diag() 函数创建对角矩阵。对角矩阵是仅在主对角线上有值的方形矩阵。np.diag() 函数会创建一个对应于对角矩阵的 ndarray

# Create a 4 x 4 diagonal matrix that contains the numbers 10,20,30, and 50
# on its main diagonal
X = np.diag([10,20,30,50])

# We print X
print()
print('X = \n', X)
print()
X =
[[10 0 0 0]
 [ 0 20 0 0]
 [ 0 0 30 0]
 [ 0 0 0 50]]

NumPy 还允许你创建在给定区间内值均匀分布的 ndarray。NumPy 的np.arange() 函数非常强大,可以传入一个参数、两个参数或三个参数。下面将介绍每种情况,以及如何创建不同种类的 ndarray。

先仅向 np.arange() 中传入一个参数。如果只传入一个参数,np.arange(N) 将创建一个秩为 1 的 ndarray,其中包含从 0 到 N - 1 的连续整数。因此,注意,如果我希望数组具有介于 0 到 9 之间的整数,则需要将 N 设为 10,而不是将 N 设为 9,如以下示例所示:

# We create a rank 1 ndarray that has sequential integers from 0 to 9
x = np.arange(10)# We print the ndarray
print('x = ', x)
x = [0 1 2 3 4 5 6 7 8 9]

如果传入两个参数,np.arange(start,stop) 将创建一个秩为 1 的 ndarray,其中包含位于半开区间 [start, stop) 内并均匀分布的值。也就是说,均匀分布的数字将包括 start 数字,但是不包括 stop 数字。我们来看一个示例

如果传入两个参数,np.arange(start,stop) 将创建一个秩为 1 的 ndarray,其中包含位于半开区间 [start, stop) 内并均匀分布的值。也就是说,均匀分布的数字将包括 start 数字,但是不包括 stop 数字。我们来看一个示例

# We create a rank 1 ndarray that has sequential integers from 4 to 9. 
x = np.arange(4,10)
# We print the ndarray
print('x = ', x)
x = [4 5 6 7 8 9]

可以看出,函数 np.arange(4,10) 生成了一个包含 4 但是不含 10 的整数序列。

最后,如果传入三个参数,np.arange(start,stop,step) 将创建一个秩为 1 的 ndarray,其中包含位于半开区间 [start, stop) 内并均匀分布的值,step 表示两个相邻值之间的差。我们来看一个示例:

# We create a rank 1 ndarray that has evenly spaced integers from 1 to 13 in steps of 3.
x = np.arange(1,14,3)

# We print the ndarray
print()
print('x = ', x)
print()
x = [ 1 4 7 10 13]

可以看出,x 具有在 1 和 13 之间的序列整数,但是所有相邻值之间的差为 3。

虽然 np.arange() 函数允许间隔为非整数,例如 0.3,但是由于浮点数精度有限,输出通常不一致。因此,如果需要非整数间隔,通常建议使用函数 np.linspace()np.linspace(start, stop, N) 函数返回 N 个在闭区间 [start, stop] 内均匀分布的数字。即 start 和 stop 值都包括在内。此外注意,在调用 np.linspace() 函数时,必须至少以 np.linspace(start,stop) 的形式传入两个参数。在此示例中,指定区间内的默认元素数量为 N= 50。np.linspace()np.arange() 效果更好,是因为 np.linspace() 使用我们希望在特定区间内的元素数量,而不是值之间的间隔。我们来看一些示例:

# We create a rank 1 ndarray that has 10 integers evenly spaced between 0 and 25.
x = np.linspace(0,25,10)

# We print the ndarray
print()
print('x = \n', x)
print()

x = [ 0. 2.77777778 5.55555556 8.33333333 11.11111111 13.88888889 16.66666667 19.44444444 22.22222222 25. ]

从上述示例中可以看出,函数 np.linspace(0,25,10) 返回一个 ndarray,其中包含 10 个在闭区间 [0, 25] 内均匀分布的元素。还可以看出,在此示例中,起始和结束点 0 和 25 都包含在内。但是,可以不包含区间的结束点(就像 np.arange() 函数一样),方法是在 np.linspace() 函数中将关键字 endpoint 设为 False

到目前为止,我们仅使用了内置函数 np.arange()np.linspace() 来创建秩为 1 的 ndarray。但是,我们可以将这些函数与 np.reshape() 函数相结合,创建秩为 2 的任何形状 ndarray。np.reshape(ndarray, new_shape) 函数会将给定 ndarray 转换为指定的 new_shape。请务必注意:new_shape 应该与给定 ndarray 中的元素数量保持一致。例如,你可以将秩为 1 的 6 元素 ndarray 转换为秩为 2 的 3 x 2 ndarray,或秩为 2 的 2 x 3 ndarray,因为这两个秩为 2 的数组元素总数都是 6 个。但是,你无法将秩为 1 的 6 元素 ndarray 转换为秩为 2 的 3 x 3 ndarray,因为这个秩为 2 的数组将包含 9 个元素,比原始 ndarray 中的元素数量多。我们来看一些示例

# We create a rank 1 ndarray with sequential integers from 0 to 19
x = np.arange(20)

# We print x
print()
print('Original x = ', x)
print()

# We reshape x into a 4 x 5 ndarray 
x = np.reshape(x, (4,5))

# We print the reshaped x
print()
print('Reshaped x = \n', x)
print()
Original x = [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]

Reshaped x =
[[ 0 1 2 3 4]
 [ 5 6 7 8 9]
 [10 11 12 13 14]
 [15 16 17 18 19]]

NumPy 的一大特性是某些函数还可以当做方法使用。这样我们便能够在一行代码中按顺序应用不同的函数。ndarray 方法和 ndarray 属性相似,它们都使用点记法 (.)。我们来看看如何只用一行代码实现上述示例中的相同结果:

Y = np.arange(20).reshape(4, 5)
Y =
[[ 0 1 2 3 4]
 [ 5 6 7 8 9]
 [10 11 12 13 14]
 [15 16 17 18 19]]

可以看出,我们获得了和之前完全一样的结果。注意,当我们将 reshape() 当做方法使用时,它应用为 ndarray.reshape(new_shape)。这样会将 ndarray 转换为指定形状 new_shape。和之前一样,请注意,new_shape 应该与 ndarray 中的元素数量保持一致。在上述示例中,函数 np.arange(20) 创建了一个 ndarray 并当做将被 reshape() 方法调整形状的 ndarray。因此,如果将 reshape() 当做方法使用,我们不需要将 ndarray 当做参数传递给 reshape() 函数,只需传递 new_shape 参数。

同样,我们也可以使用 reshape()np.linspace() 创建秩为 2 的数组,如以下示例所示。

# We create a rank 1 ndarray with 10 integers evenly spaced between 0 and 50,
# with 50 excluded. We then reshape it to a 5 x 2 ndarray
X = np.linspace(0,50,10, endpoint=False).reshape(5,2)
# We print X
print('X = \n', X)
X =
 [[ 0. 5.]
 [ 10. 15.]
 [ 20. 25.]
 [ 30. 35.]
 [ 40. 45.]]

我们将创建的最后一种 ndarray 是随机 ndarray。随机 ndarray 是包含随机数字的数组。在机器学习中,通常需要创建随机指标,例如,在初始化神经网络的权重时。NumPy 提供了各种随机函数来帮助我们创建任何形状的随机 ndarray。

我们先使用 np.random.random(shape) 函数创建具有给定形状的 ndarray,其中包含位于半开区间 [0.0, 1.0) 内的随机浮点数。

# We create a 3 x 3 ndarray with random floats in the half-open interval [0.0, 1.0).
X = np.random.random((3,3))

# We print X
print()
print('X = \n', X)
print()

X =
[[ 0.12379926 0.52943854 0.3443525 ]
 [ 0.11169547 0.82123909 0.52864397]
 [ 0.58244133 0.21980803 0.69026858]]

NumPy 还允许我们创建由特定区间内的随机整数构成的 ndarray。函数 np.random.randint(start, stop, size = shape) 会创建一个具有给定形状的 ndarray,其中包含在半开区间 [start, stop) 内的随机整数。我们来看一个示例:

# We create a 3 x 2 ndarray with random integers in the half-open interval [4, 15).
X = np.random.randint(4,15,size=(3,2))

# We print X
print('X = \n', X)
X =
[[ 7 11]
 [ 9 11]
 [ 6 7]]

在某些情况下,你可能需要创建由满足特定统计学特性的随机数字组成的 ndarray。例如,你可能希望 ndarray 中的随机数字平均值为 0。NumPy 使你能够创建从各种概率分布中抽样的数字组成的随机 ndarray。例如,函数 np.random.normal(mean, standard deviation, size=shape) 会创建一个具有给定形状的 ndarray,其中包含从正态高斯分布(具有给定均值和标准差)中抽样的随机数字。我们来创建一个 1,000 x 1,000 ndarray,其中包含从正态分布(均值为 0,标准差为 0.1)中随机抽样的浮点数。

# We create a 1000 x 1000 ndarray of random floats drawn from normal (Gaussian) distribution
# with a mean of zero and a standard deviation of 0.1.
X = np.random.normal(0, 0.1, size=(1000,1000))

# We print X
print()
print('X = \n', X)
print()

# We print information about X
print('X has dimensions:', X.shape)
print('X is an object of type:', type(X))
print('The elements in X are of type:', X.dtype)
print('The elements in X have a mean of:', X.mean())
print('The maximum value in X is:', X.max())
print('The minimum value in X is:', X.min())
print('X has', (X < 0).sum(), 'negative numbers')
print('X has', (X > 0).sum(), 'positive numbers')
X =
[[ 0.04218614 0.03247225 -0.02936003 ..., 0.01586796 -0.05599115 -0.03630946]
 [ 0.13879995 -0.01583122 -0.16599967 ..., 0.01859617 -0.08241612 0.09684025]
 [ 0.14422252 -0.11635985 -0.04550231 ..., -0.09748604 -0.09350044 0.02514799]
 ...,
 [-0.10472516 -0.04643974 0.08856722 ..., -0.02096011 -0.02946155 0.12930844]
 [-0.26596955 0.0829783 0.11032549 ..., -0.14492074 -0.00113646 -0.03566034]
 [-0.12044482 0.20355356 0.13637195 ..., 0.06047196 -0.04170031 -0.04957684]]

X has dimensions: (1000, 1000)
X is an object of type: class 'numpy.ndarray' The elements in X are of type: float64
The elements in X have a mean of: -0.000121576684405
The maximum value in X is: 0.476673923106
The minimum value in X is: -0.499114224706 X 具有 500562 个负数 X 具有 499438 个正数

可以看出,ndarray 中的随机数字的平均值接近 0,X 中的最大值和最小值与 0(平均值)保持对称,正数和负数的数量很接近。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值