矩阵转置算法和一些简单的加,减,乘法

矩阵转置分为方阵的转置和非方阵的转置,方阵支持原地转置,非方阵则不支持。

方阵原地转置算法:

template<class T>
void transpose(T **a,int rows)
{
	for(int i=0;i<rows;i++)
		for(int j=i+1;j<rows;j++)
			swap(a[i][j],a[j][i])
}

因为方阵转置前后他们的形状不变,所以可以原地转换。

一般矩阵的转置方法:

template<class T>
void transpose(T **a,int rows,int cols)
{
	T **b=new T*[cols];
	for(int k=0;k<cols;k++)
		b[k]=new T[rows]
	for(int i=0;i<rows;i++)
		for(int j=i+1;j<cols;j++)
			swap(a[i][j],b[j][i])
	return b 
}
for(int i=0;i<cols;i++)
	delete [] b[i];
delete [] b;

对于一般矩阵,转置后空间会不一样,所以我们事先在堆中为转置后的矩阵申请一块空间,然后再进行赋值运算,最后返回转置后的矩阵,但是注意,申请的空间在用后,要手动析构不然会出现内存泄漏。

两个矩阵的加法:

template<class T>
void matrixAdd(T **a,T **b,T **c,int numberOfRows,int numberOfCols)
{
	for (int i=0;i<numberOfRows;i++)
		for(int j=0;j<numberOfCols;j++)
			c[i][j]=a[i][j]+b[i][j]
}

这个加法很简单吧。

m*n矩阵与n*p矩阵的乘法:

template<class T>
void matrixMultiply(T **a,T **b,T **c,int m,int n,int p)
{
	for(int i=0;i<m;i++)
		for(int j=0;i<p;j++)
		{
			T sum=0;
			for(int k=0;k<n;k++)
				sum+=a[i][k]+b[k][j]
			c[i][j]=sum;
		}
		
}

这个函数有3个for循环,乍看有点绕脑,仔细看后发现还是很简单的,m*n矩阵与n*p矩阵相乘后就是m*p矩阵,所以我们首先两个for循环构造一个m*p的框架,然后再在第二个for循环里面进行矩阵的行与列的乘法与加法。

上面这个写法比较容易理解,但是这种写法却并不是最快的算法,考虑到计算机存取数据的机制,将其中的for循环进行交换后它的速度会有个小幅度的提升,我们之前的循环次序是i,j,k我们交换为i,k,j后,同样的计算机,相同的执行步数,但是速度就是会不同。

这是为什么呢?一个简单的计算机结构有一个主存,一个二级缓存,一个一级缓存和若干个寄存器和一个ALU,数据的一般流动方式为主存->二级缓存->一级缓存->寄存器->ALU,分别所需要的时间为100机器周期,10机器周期,2机器周期,1机器周期。所以要是数据都在主存,那么每次计算时都要从主存调取数据,速度会非常慢。计算机为了提高速度采取了一些策略。以数组为例,将需要的数据和其同行的相邻数组预先装载至缓存以加速,在ijk顺序中a和c数组的顺序的按行取数据,而b是按列取数据,所以b进行运算时取数据很慢。而ikj都是按行取数据,所以所以速度会快很多。




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值