渐进计法

如果一个程序的复杂度为:1<f(n)<2*n

那么我们可以说:f(n)=O(n)即f(n)的复杂度渐进的小于或者等于n.

                           f(n)=Ω(1)即f(n)的复杂度渐进的大于或者等于1,即1是f(n)的下界。

                           f(n)=Θ(n)即f(n)的复杂度渐进的等于n。

以上的三个就是我们经常要用的三个符号,代表大于等于,小于等于,等于,在复杂的解释就要去看渐进数学了。

以上都是针对单个变量的渐进计法,下面列举一个2个变量的渐进计法的列子,更多的变量,依次类推。

f(m,n)=3*m^2*n+m^3+10*m*n+2*n^2

那么有f(m,n)=O(m^2*n+m^3+n^2)

为什么呢?

对于两个变量的渐进计法,我们也是将其分解为两个单变量的渐进计法进行判别的,当f(n)渐进的小于(g(n))时,且f(m)

的复杂度与g(m)的复杂度比值是一个常数时,我们说f(n,m)渐进的小于g(n,m)。这和高等数学的无穷小判断很类似。一个变量满足无穷小,另一个变量比值为常数,那么该函数就是另一个的无穷小。

                           

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值