一图看懂:信号的时域、频域、相位 ​​​​

本文深入浅出地介绍了相位谱的概念,通过解释如何从相位谱中获取时间差并转化为相位信息,帮助读者更好地理解傅里叶变换。通过将穿过时间0点的频率轴最近的波峰投影并计算,乘以2π得到相位,为信号处理和频谱分析提供了关键洞见。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

值得说明的是相位谱:如下两图,相位谱是从上往下看,距离穿过时间0点的频率轴最近的波峰(红点),投影到下平面(投影点用粉点表示),将投影得到的时间差依次除以所在频率的周期,再乘以2π(整周相位),就得到了相位谱。

详细了解,请参阅:深入浅出的讲解傅里叶变换_CSDN博客_傅里叶变换

 

如果你看了这篇文章之后仍然不理解傅里叶变换,我会毫不犹豫地请你过来亲自掐死我。傅里叶变换是种数学工具,用于将个函数或信号时域频域之间进行转换。它是以法国数学家约瑟夫·傅里叶的名字命名的。傅里叶变换的基本思想是将个任意复杂的函数分解为多个简单的正弦和余弦函数的和。 在时域上,个函数可以表示为随时间变化的振幅和相位的复杂波形。而在频域上,这个函数可以被分解为不同频率的正弦和余弦函数的和,每个频率都有不同的振幅。 傅里叶变换在许多领域都有广泛的应用,特别是在信号处理像处理中。例如,在音频处理中,傅里叶变换可以将时域上的声音信号转换为频谱,进而进行音频分析和滤波。在像处理中,傅里叶变换可以被用来对像进行滤波、增强和压缩等操作。 傅里叶变换的数学推导和理论比较复杂,需要定的数学基础才能完全理解。但是根据我的理解,傅里叶变换主要是通过将个函数分解为正弦和余弦函数的和,把函数的表示从时域转换到频域,使我们能够更好地理解和处理信号的各个频率成分。 总之,傅里叶变换是种强大的数学工具,可以帮助我们理解和处理复杂的函数或信号。如果你看完了这篇文章仍然不懂傅里叶变换,那请尽情地掐死我吧。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值