语音信号处理-概念(一):时域信号(横轴:时间;纵轴:幅值)、频谱图(横轴:频率;纵轴:幅值)--傅里叶变换-->时频谱图(语谱图/声谱图)【横轴:时间;纵轴:频率;颜色深浅:幅值】

本文介绍了语音信号处理中的时域和频域概念,包括时域信号、采样定理、傅里叶变换以及分帧处理。重点讲解了短时傅里叶变换如何用于获取时频谱图,阐述了在语音信号分析中,分帧和傅里叶变换如何帮助理解信号的频率成分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们经常接触到与频谱相关的概念。本节对这些概念之间的区别进行简单的介绍。

一般来讲,将一段时域信号通过离散傅里叶变换后,将频率作为横轴、幅度作为纵轴,得到的图像称作 频谱。若将相位作为纵轴,则称为 相位频谱。简单来说,频谱表示信号是由哪些频率的成分所组成的。

倒谱一词是将频谱英文的前四个字母倒过来写而构成的。倒谱的定义为,将频谱的对数作为信号,进行傅里叶变换后得到的新的频谱——此时其横轴被称为倒频率(quefrency)[50]。

简单来讲,倒谱的好处在于,其能够将时域的卷积运算变为倒谱域的加法运算。倒谱在语音领域有着非常广泛的应用。

时频谱图(声谱图/语谱图)是指信号经过短时傅里叶变换后,得到的以时间为横轴、频率为纵轴、颜色或灰度表示幅度的图像。1.2 节提到的最早的声纹识别技术就是基于时频谱的。图2.20下方的图像也是时频谱。

除此之外,有时我们将频谱或时频谱中的幅值替换为幅值的平方,并称之为功率谱</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值