这里先直接简单介绍一下神经网络就行了
神经网络是一种计算模型,受到人脑神经元网络结构的启发,用于机器学习和模式识别任务。神经网络由大量相互连接的节点(也称为神经元)组成,这些节点模拟了生物神经网络中的神经元。这些连接和节点形成了层次结构,包括输入层、隐藏层(可能有多个)和输出层。
每个神经元都与其他神经元相连,并具有权重,表示连接的强度。神经网络通过学习适应输入数据并调整权重,以便在给定输入时生成正确的输出。这种学习过程通常使用梯度下降等优化算法来最小化模型预测与实际结果之间的误差。
我这里就讲讲自己的一些搭建记录步骤,其实也没什么
我觉得我们在进行神经网络的搭建的时候,我们一定要注意输入和输出,这个是第一步,我觉得这个很重要,我们需要清楚的知道自己要输入的是什么,要制作自己的数据集合,这个也很重要,数据集的制作,和每个人的自己的任务相关,制作完数据集,我们需要选择我们自己的框架,像什么pytorch,tensorflow,每个框架的网络搭建是不一样的,这个要清楚,当我们搭建完最好输出看一下,网络是什么样子的,心里有个数,然后自己实例化,然后运行,在运行的过程中记得保存我们需要的准确率等等的指标,最后输出我们记录的结果就行了。
像我看网上很多人以上来就介绍,什么梯度下降,过拟合的概念,其实我觉得对新手不是那么友好的,需要一些基础才能看懂他们为什么这么构建,所以我才写一个最简单的构建步骤,我也不讲什么概念。
1.制作数据集合
我这里看了b站一个up主讲的这个其实讲的挺好的,但是他这个有个问题就是数据集已经差不多准备好的了,像我们在往常对于很多图片想要构建自己的数据集合,一般的步骤是(我这里先假设数据是已经存在的,而且是按照类别归纳好的)
1.1根据归纳好的数据集,制作标签列表,什么叫标签列表呢,前面是路径,后面是标签
1.2制作完标签列表,我们需要根据这个列表,制作我们的数据集,怎么制作呢,直接循环列表读取每个路径下的图片,对其进行大小裁剪什么的呀这些操作,这一步其实是比较难的,数据集的制作
1.3根据我们制作的数据集将其转换为我们前面选择的框架的数据要求,例如,tensorflow的是ImageDataGenerator,将其做成数据
2.然后就开始构建我们的神经网络模型了,这个直接根据选择的框架,然后构建,指定不同的参数就行了,但是有个重点,模型的输入,必须是数据集的形状,至于隐藏层,你想怎么写就怎么写,然后就是什么学习率,什么迭代次数,这个直接随便找,网上很多
3.然后根据训练输出结果就行了