Keras深度学习实战(4)——深度学习中常用激活函数和损失函数详解
常用激活函数
使用激活函数可以实现网络的高度非线性,这对于建模输入和输出之间的复杂关系非常关键。如果没有非线性激活函数,那么该网络将仅仅能够表达简单的线性映射,即便有再多的隐藏层,其整个网络跟单层神经网络也是等价的,只有加入了非线性激活函数之后,深度神经网络才具备了令人惊异的非线性映射学习能力。 可以在网络中的多个层中应用激活函数。
Sigmoid 激活函数
sigmoid
是使用范围最广的一类激活函数,其取值范围为 [0, 1]
,它可以将一个实数映射到 [0, 1]
的区间,可以将其用于二分类问题。
Sigmoid
函数公式定义如下所示:
s i g m o