Mask R-CNN实例分割算法 学习记录

一、导入

目标检测(用框线框出来):缺点是可以区分个体,但不够精确
在这里插入图片描述

语义分割(标出属于猫的像素点):缺点是可以划分像素点但不可以区分个体
在这里插入图片描述

综合两者优点的算法:Mask R-CNN实例分割算法

实例分割:Instance Segmentation(实例分割)不仅要正确的找到图像中的objects,还要对其精确的分割。所以Instance Segmentation可以看做object dection和semantic segmentation的结合。

该算法简介:Mask RCNN是Faster RCNN的扩展,引入了RoI Align代替Faster RCNN中的RoI Pooling,相对于Faster RCNN利用特征金字塔增加了一些公用特征层,并在最后获得预测结果后,增加了一个语义分割模型用于进行语义分割。

二、算法流程

在这里插入图片描述
Mask-RCNN使用Resnet101作为主干特征提取网络,对应着图像中的CNN部分,其对输入进来的图片有尺寸要求,需要可以整除2的6次方。在进行特征提取后,利用长宽压缩了两次、三次、四次、五次的特征层来进行特征金字塔结构的构造。

引入了RoI Align代替Faster RCNN中的RoI Pooling。因为RoI Pooling并不是按照像素一一对齐的(pixel-to-pixel alignment),也许这对bbox的影响不是很大,但对于mask的精度却有很大影响。使用RoI Align后mask的精度从10%显著提高到50%。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

特征金字塔FPN

在这里插入图片描述

在这里插入图片描述

获得Proposal建议框

Proposal建议框的解码

对Proposal建议框加以利用(Roi Align)

预测框的解码

mask语义分割信息的获取

建议框网络的训练

Classiffier模型的训练

mask模型的训练

.

参考博客:https://blog.csdn.net/weixin_44791964/article/details/104629135

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Shashank497

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值