揭秘微观世界的四大神器:SEM、TEM、AFM、STM的原理与实战,看完你就是专家,记得收藏!

  1. 扫描电子显微镜SEM

分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成像。

谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等。

提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等。

测试要求:粉体需5mg左右,块体长宽高需小于10mm,导电性差及磁性样品建议喷金。

优点:能够测量直径5-10mm的块体样品,放大倍数30~100万倍,分辨率可达1nm,适用于断面和粗糙表面的观察分析,图像立体感和真实感强,易于识别和解析样品,制备方法简单。

缺点:样品需要导电或导电性处理,要求在高真空环境下测试。

原理详细视频:

  1. 透射电子显微镜TEM

分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图像。

谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象。

提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等。

测试要求:粉体需5mg左右纳米级颗粒,块体样品需通过离子减薄、FIB、电解双喷等方式制样后测试。

优点:可靠性高,使用量少,放大倍数50~200万倍,分辨率可达0.1~0.2nm。

缺点:通常要求样品的厚度小于100nm,否则电子束难以穿过,且需要高真空环境下测试。

原理详细视频:

  1. 原子力显微镜AFM

分析原理:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,由于针尖尖端原子与样品表面原子间存在极微弱的作用力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将在垂直于样品的表面方向起伏运动,从而可以获得样品表面形貌的信息。

谱图的表示方法:微悬臂对应于扫描各点的位置变化。

提供的信息:样品表面形貌的信息、表面原子间的力以及表面的弹性、塑性硬度、粘着力、摩擦力等性质。

测试要求:块体及薄膜样品,长宽小于30mm,厚度不超过10mm,表面起伏不超过10μm;粉末/纤维样品含量不少于1mL。

优点:能够提供真正的三维表面图,可以研究包括绝缘体在内的固体材料,表面结构接近原子分辨率,无需对样品进行特殊处理,在真空大气甚至液体环境下均可工作。

缺点:成像范围太小、成像速度慢、受弹震影响太大。

原理详细视频:

  1. 扫描隧道显微镜STM

分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象。

谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等。

提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等。

测试要求:需要导电,扫描面非常干净平整,无易挥发物。

优点:分辨率能够达到原子级别、具有可实时观察性、能够在真空大气常温等不同环境下工作、样品可浸在水或其他溶液中、探测过程不会损伤样品。

缺点:样品需要导电、扫描面需要非常干净平整、且需不易挥发物。

原理详细视频:


若有模拟计算、测试表征、超算服务器、实验耗材等需求,可添加商务微信,有需求时再咨询下单,或收藏小程序【元素魔方】,随时下单:

99184e4e9adc86c130c8214409dfc62c.png

数据集介绍:野生动物家畜多目标检测数据集 数据集名称:野生动物家畜多目标检测数据集 数据规模: - 训练集:1,540张图片 - 验证集:377张图片 - 测试集:316张图片 分类类别: Brown-bear(棕熊)、Chicken(鸡)、Fox(狐狸)、Hedgehog(刺猬)、Horse(马)、Mouse(老鼠)、Sheep(绵羊)、Snake(蛇)、Turtle(龟)、Rabbit(兔)及通用object(物体)共11个类别 标注格式: YOLO格式标注,包含归一化坐标类别索引,支持目标检测模型训练 数据特性: 涵盖航拍地面视角,包含动物个体及群体场景,适用于复杂环境下的多目标识别 农业智能化管理: 通过检测家畜(鸡/马/绵羊等)数量及活动状态,辅助畜牧场自动化管理 生态监测系统: 支持野生动物(棕熊/狐狸/刺猬等)识别追踪,用于自然保护区生物多样性研究 智能安防应用: 检测农场周边危险动物(蛇/狐狸),构建入侵预警系统 动物行为研究: 提供多物种共存场景数据,支持动物群体交互行为分析 实用性标注体系: - 精细标注包含动物完整轮廓的边界框 - 特别区分野生动物家畜类别,支持跨场景迁移学习 多维度覆盖: - 包含昼间/复杂背景/遮挡场景 - 涵盖陆地常见中小型动物禽类 - 提供通用object类别适配扩展需求 工程适配性强: - 原生YOLO格式适配主流检测框架(YOLOv5/v7/v8等) - 验证集测试集比例科学,支持可靠模型评估 生态价值突出: - 同步覆盖濒危物种(龟类)常见物种 - 支持生物多样性保护农业生产的双重应用场景
内容概要:本文档详细介绍了Python实现TSO-ELM(金枪鱼群优化算法优化极限学习机)多输入单输出回归预测的项目实例。极限学习机(ELM)作为一种快速训练的前馈神经网络算法,虽然具有训练速度快、计算简单等优点,但也存在局部最优解和参数敏感性的问题。金枪鱼群优化算法(TSO)通过模拟金枪鱼群体觅食行为,具有较强的全局搜索能力。将TSOELM结合形成的TSO-ELM模型,可以优化ELM的输入层和隐藏层之间的权重,提回归预测的准确性。项目包括数据预处理、TSO优化、ELM回归模型训练和预测输出四个主要步骤,并提供了详细的代码示例。; 适合人群:对机器学习、优化算法有一定了解的数据科学家、算法工程师和研究人员,特别是那些希望深入理解智能优化算法在回归预测任务中的应用的人群。; 使用场景及目标:① 提升ELM在多输入单输出回归预测中的性能,特别是在处理非线性问题时的预测精度;② 解决ELM中的局部最优解和参数敏感性问题;③ 优化ELM的隐层权重和偏置值,提模型的表达能力和预测能力;④ 在金融、气象、能源、医疗、交通等领域提供更准确的预测模型。; 阅读建议:本文档不仅提供了理论解释,还包含详细的代码实现,建议读者在阅读过程中结合代码进行实践,理解TSO-ELM模型的工作原理,并尝试调整参数以优化预测效果。同时,读者应关注TSO算法在维复杂问题中的应用挑战,思考如何改进优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

元素魔方科研服务

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值