麻雀搜索算法(SSA)文章复现:《多策略融合的改进麻雀搜索算法及其应用_付华》
策略为:精英立方混沌反向学习策略初始化种群+鸡群算法改进加入者策略+自适应调整系数+柯西变异策略+高斯变异策略)——ISSA
复现内容包括:文章改进SSA算法实现、23个基准测试函数、改进策略因子画图分析、文中相关混沌图分析、与SSA对比等。
代码基本上每一步都有注释,非常易懂,代码质量极高,便于新手学习和理解。
ID:1859668827313162
雯婷的小屋
麻雀搜索算法(SSA)是一种启发式优化算法,其灵感来源于麻雀在觅食过程中的行为。该算法模拟了麻雀群体的群体行为和个体行为,通过相互合作发现最优解。为了进一步提升SSA算法的性能,付华在《多策略融合的改进麻雀搜索算法及其应用》一文中提出了一种改进的麻雀搜索算法——ISSA。
ISSA算法的策略主要包括:精英立方混沌反向学习策略初始化种群、鸡群算法改进加入者策略、自适应调整系数、柯西变异策略以及高斯变异策略。这些策略的有机融合使得ISSA算法具备了更强的全局搜索能力和收敛速度。
文章的复现工作主要分为以下几个方面:
-
改进SSA算法实现
付华在原始的SSA算法的基础上进行了改进,将不同的策略融合到算法中。复现工作需要详细描述这些改进的策略,并给出相应的实现代码。代码应该经过适当注释,便于新手学习和理解。 -
23个基准测试函数
为了验证ISSA算法的性能,付华在文中选择了23个经典的基准测试函数进行了实验。这些基准测试函数的选取应根据文中的描述进行复现,并给出函数的定义和参数设置。 -
改进策略因子画图分析
为了更好地理解ISSA算法的改进策略在优化过程中的表现,付华通过绘制策略因子的变化曲线进行了分析。复现工作需要按照文中的描述,使用适当的绘图工具绘制出相应的曲线,并对曲线的变化进行分析和解释。 -
文中相关混沌图分析
混沌图是一种可视化分析方法,能够揭示混沌系统的动力学特性。付华在文中对改进的SSA算法引入了混沌元素,并分析了混沌图的特性。复现工作需要按照文中的描述,生成相应的混沌图,并对图中的特性进行分析和解释。 -
与SSA对比
为了验证ISSA算法的优越性,付华在文中将其与原始的SSA算法进行了对比实验。复现工作需要按
以上相关代码,程序地址:http://matup.cn/668827313162.html