Pytorch菜鸟入门——Regression回归【代码】
- 本系列文章为小白针对Morvan的课程中Pytorch学习过程中理解和记录,用于自己复习回顾,可参考。
1.准备数据
这部分首先是导入需要用的包,其中创建一些假数据来模拟真实的情况. 比如一个一元二次函数: y = a * x^2 + b, 我们给 y 数据加上一点噪声来更加真实的展示它.其中 torch.unsqueeze是将一维数据变为二维。
本来 x,y都需要放入variable里才可以使用,但现在最新的pytorch不用写这一句了。# x, y = Variable(x), Variable(y)可以直接注释。
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
# x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size())
# noisy y data (tensor), shape=(100, 1)
# x, y = Variable(x), Variable(y)
# plt.scatter(x.data.numpy(), y.data.numpy())
# plt.show()
2.建立神经网络
真正构建神经网络是在forward里。
3.训练神经网络
SGD是随机梯度下降的优化方式
学习率lr一般设置为小于1
误差函数计算prediction与y的误差时一定prediction在前,Y(真实值)在后。
4.动态可视化训练结果
其中plt.ion()表示画动态图
t为训练步数,t%5==0为每5步更新下图
5.可视化结果【选取其中几张】
、
可执行代码如下:
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
# torch.manual_seed(1) # reproducible
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size()) # noisy y data (tensor), shape=(100, 1)
# torch can only train on Variable, so convert them to Variable
# The code below is deprecated in Pytorch 0.4. Now, autograd directly supports tensors
# x, y = Variable(x), Variable(y)
# plt.scatter(x.data.numpy(), y.data.numpy())
# plt.show()
class Net(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(n_feature, n_hidden) # hidden layer
self.predict = torch.nn.Linear(n_hidden, n_output) # output layer
def forward(self, x):
x = F.relu(self.hidden(x)) # activation function for hidden layer
x = self.predict(x) # linear output
return x
net = Net(n_feature=1, n_hidden=10, n_output=1) # define the network
print(net) # net architecture
optimizer = torch.optim.SGD(net.parameters(), lr=0.2)
loss_func = torch.nn.MSELoss() # this is for regression mean squared loss
plt.ion() # something about plotting
for t in range(200):
prediction = net(x) # input x and predict based on x
loss = loss_func(prediction, y) # must be (1. nn output, 2. target)
optimizer.zero_grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
if t % 5 == 0:
# plot and show learning process
plt.cla()
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
plt.pause(0.1)
plt.ioff()
plt.show()