pytorch:线性回归(Regression)

使用pytorch+python实现回归。

程序:

import torch
import torch.nn.functional as F
from matplotlib import pyplot as plt

# 创建数据
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x shape=(100,1)
y = x.pow(2)+0.2*torch.rand(x.size())  # y shape=(100,1)

# Drawing data
# plt.scatter(x.data.numpy(),y.data.numpy())
# plt.show()


# 创建网络
class Net(torch.nn.Module):  # 继承torch的Module
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()  # 继承__init__功能
        # 定义每层用什么样的形式
        self.hidden = torch.nn.Linear(n_feature, n_hidden)  # 隐藏层输出
        self.predict = torch.nn.Linear(n_hidden, n_output)  # 输出层输出

    def forward(self, X):  # Module的正向传播功能
        X = F.relu(self.hidden(X))  # 激活函数
        X = self.predict(X)         # 输出值
        return X


net = Net(n_feature=1, n_hidden=10, n_output=1)
# print(net)

# 训练
optimizer = torch.optim.SGD(net.parameters(), lr=0.2)  # 传入net的所有参数,学习率
loss_func = torch.nn.MSELoss()  # 代价函数:预测值和真实值得误差(均方差)

for i in range(100):
    prediction = net(x)  # 给net训练数据x,输出预测值
    loss = loss_func(prediction, y)  # 计算两者的误差
    optimizer.zero_grad()  # 清空上一步的残余更新参数值
    loss.backward()  # 误差反向传播,更新参数
    optimizer.step()  # 将参数更新值施加到net的parameters上

    # 可视化
    if i % 5 == 0:
        plt.cla()
        plt.scatter(x.data.numpy(), y.data.numpy())
        plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=3)
        plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size':20, 'color': 'red'})
        plt.pause(0.1)

结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值