使用pytorch+python实现回归。
程序:
import torch
import torch.nn.functional as F
from matplotlib import pyplot as plt
# 创建数据
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x shape=(100,1)
y = x.pow(2)+0.2*torch.rand(x.size()) # y shape=(100,1)
# Drawing data
# plt.scatter(x.data.numpy(),y.data.numpy())
# plt.show()
# 创建网络
class Net(torch.nn.Module): # 继承torch的Module
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__() # 继承__init__功能
# 定义每层用什么样的形式
self.hidden = torch.nn.Linear(n_feature, n_hidden) # 隐藏层输出
self.predict = torch.nn.Linear(n_hidden, n_output) # 输出层输出
def forward(self, X): # Module的正向传播功能
X = F.relu(self.hidden(X)) # 激活函数
X = self.predict(X) # 输出值
return X
net = Net(n_feature=1, n_hidden=10, n_output=1)
# print(net)
# 训练
optimizer = torch.optim.SGD(net.parameters(), lr=0.2) # 传入net的所有参数,学习率
loss_func = torch.nn.MSELoss() # 代价函数:预测值和真实值得误差(均方差)
for i in range(100):
prediction = net(x) # 给net训练数据x,输出预测值
loss = loss_func(prediction, y) # 计算两者的误差
optimizer.zero_grad() # 清空上一步的残余更新参数值
loss.backward() # 误差反向传播,更新参数
optimizer.step() # 将参数更新值施加到net的parameters上
# 可视化
if i % 5 == 0:
plt.cla()
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=3)
plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size':20, 'color': 'red'})
plt.pause(0.1)
结果: