SVR(Support Vector Regression)基础学习(一)——SVM基础

本文介绍了SVM支持向量机的基本概念,特别关注其在二分类问题中的应用。通过最大化间隔,SVM寻找最优决策边界以实现最佳分类效果。文章深入探讨了代价函数、hard-margin SVM以及如何将问题转化为凸优化问题,为理解SVR打下基础。
摘要由CSDN通过智能技术生成

这篇文章主要回顾SVM支持向量机的基础知识。

SVM(Support Vector Machine)用来处理分类(classification)问题时,每个instance对应的label是离散的相异类别(SVM中常用整数来表示),SVM的目的是在空间中找到将instance一分为二的平,且所有instance到这个平面的间隔达到最大。SVM的基本模型定义为特征空间上的间隔最大的线性分类器,最终可转化成一个凸优化问题。

1.1 对二分类问题的具体描述

训练样本x\in\mathbb{R}^{n},标签y\in−1,1,对于线性分类器来说:

  • 参数: w\in\mathbb{R}^{n} and 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值