这篇文章主要回顾SVM支持向量机的基础知识。
SVM(Support Vector Machine)用来处理分类(classification)问题时,每个instance对应的label是离散的相异类别(SVM中常用整数来表示),SVM的目的是在空间中找到将instance一分为二的平,且所有instance到这个平面的间隔达到最大。SVM的基本模型定义为特征空间上的间隔最大的线性分类器,最终可转化成一个凸优化问题。
1.1 对二分类问题的具体描述
训练样本,标签−1,1,对于线性分类器来说:
- 参数: and