如何提高手机语音助手识别的精准性

本文探讨了手机语音助手识别不精准的原因,重点介绍了自动语音识别技术面临的多语种识别挑战,包括语音质量差异、词汇和语法多样性、数据收集与标注困难等问题。文章还提到了海天瑞声等公司提供的语音数据库对改善语音识别的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目前,各大手机品牌都已配备了各自的语音识别助手,但当我们在日程生活中使用这些语音助手的时候,都会面临一个尴尬的状况,就是语音助手不能正确识别我们的指令需求,“你问它东,经常给你答西”,令人哭笑不得。

在这里插入图片描述
在这里插入图片描述

为此,不少人会产生这样的疑惑:手机功能已如此强大的今天,为什么自己的手机语音小助手还不能精准的识别自己的语音指令呢?

今天小编就给大家解答一下这个疑惑~

一、 手机语音识别小助手主要依靠的技术是:自动语音识别技术

自动语音识别技术( Automatic Speech recognition,ASR )主要是一种从声 音到文字的转换系统,该技术发端于20世纪50年代,后来经历了 多次革新与发展。从最初的识别简单的10个英文数字到今天各种语 音识别软件的开发,多平台的技术运用,加上深度神经网络技术和大数据的结合,语音识别的精准度己有大幅提升,同时在智能机器人 、 智能家居等领域有较大的应用需求。目前研究语音识别技术的,国内 外比较知名的有科大讯飞、百度 、微软、 谷歌、IBM、苹果等公司, 当然同时也有不少数公司专门提供大量语音 数据及文本数据,例如海天瑞声 。我们所说的语音识别并非特定的人声识别,而是尽可能 的收集大量的样本数据,经过转换标注,最后开发识别一种或多种语 言的程序。选取的样本既要保证量的规模,又要保证质的准确。

传统的多语种语音识别技术首先判断语种信息,然后由对应语种的自动语音识别系统进行处理。这种级联式的多语种语音识别系统时延较高,还需要针对每种语言开发单独的ASR系统,且语音识别准确率很大程度上会受到前端语种识别( Language Identification,LID) 准确 率的影响。

简单理解就是:世界上语种种类繁多,没有充足的语言数据喂给AI,导致AI不能正确反应、识别指令。换句话说,多语种语音识别挑战(Multi-lingual ASR)也是目前语音助手开发遇到的最大难题。

二、多语种识别(Multi-lingual ASR)面临哪些挑战?

多语种识别(Multi-lingual ASR)是指将不同语言的语音信号转换为文本的过程。随着全球化的发展,多语种识别技术在各个领域的需求日益增长。然而,尽管多语种识别技术取得了显著进展,但仍然面临一系列挑战:

  1. 语音质量差异:不同语言的发音特点和语音质量存在较大差异。例如,英语中的元音和辅音可能与汉语或其他亚洲语言有很大不同,这给多语种识别带来了挑战。此外,背景噪音、口音和方言等因素也影响着语音识别的准确性。

  2. 词汇和语法多样性:不同语言之间的词汇和语法结构差异很大。有些语言具有丰富的词汇量和复杂的语法规则,这使得多语种识别系统需要处理更多的信息。同时,一些罕见或少数民族语言可能会导致训练数据不足的问题。

  3. 数据收集与标注困难:为了训练有效的多语种识别模型,需要大量且高质量的双语或多语言数据。然而,收集、整理和标注这些数据往往需要大量的人力和时间成本。此外,对于某些小众语言或地区性语言,获取合适的数据更加困难。

  4. 跨语言表示学习:传统的神经网络模型通常使用单语言的输入输出对进行训练。要实现多语种识别,需要设计能够处理多语言信息的神经网络架构。这包括设计适用于不同语言特征的编码器、解码器和损失函数等。

  5. 端到端训练困难:由于多语种识别涉及到多个子任务(如声学模型、语言模型和解码器等),直接从原始音频信号到文本进行端到端训练相对困难。因此,许多研究人员采用了分层建模的方法,将整个过程分解为多个阶段,并在每个阶段中独立训练各个子任务。

  6. 实时性和计算资源需求:对于实时应用场景(如电话客服、会议记录等),准确的多语种识别至关重要。然而,训练高效的多语种识别模型却需要大量的计算资源。

综上,想要语音助手变得更有“灵性”,在前期开发时需要有大量语言数据“喂养”它们。可是,语言数据的采集、标注、分析并不容易,因此市场上出现了不少类似海天瑞声这样的专注于为AI算法训练提供数据产品及解决方案的服务商。

三、语音数据库推荐

海天瑞声基于深厚的语音语言学积累,数据集及数据服务涵盖190+语种/方言,在英、法、德、意、西、日、韩等主流语种基础上,新增了吉尔吉斯语、齐切瓦语、卢旺达语等语种。此外建立了成熟的发音词典构建流程,拥有110+语种/方言的发音词典,拓展了迪维希语、斐济语、马达加斯加语等小语种。

单一的语音识别模型无法满足所有场景的需求。因此海天瑞声还在积极探索并研发多模态融合的语音识别技术,将语音与图像、文本等多种信息相结合,提供更加准确和全面的语义理解能力。

1.中国中英混识别语音库(Chinese and English Mixed Speech Recognition Corpus)

该识别数据在安静办公室环境中完成录制,共有1800位发音人参与,包括871位男性和929位女性,所有参与录音的发音人均经过专业筛选,保证其发音标准,吐字清晰。录音文本来自娱乐搜索领域(音乐、视频)。

产品库编号:King-ASR-700

录音时长:1655.1小时

2.德国德英混识别语音库(German and English Mixed Speech Recognition Corpus)

该识别数据在安静办公室/家居环境中完成录制,共有100位发音人参与,包括58位男性和42位女性,所有参与录音的发音人均经过专业筛选,保证其发音标准,吐字清晰。录音文本覆盖新闻、日常用语等领域。

产品库编号:King-ASR-702

录音时长:211.5小时

3.美国英语识别语音库-商务会议对话(American English Business Meeting Conversational Speech Recognition Corpus)

该识别数据在安静办公室/家居环境中完成录制,共有204位发音人参与,包括93位男性和111位女性,所有参与录音的发音人均经过专业筛选,每3人一组进行商务会议仿真对话录制,录音内容覆盖69个商务话题。

产品库编号:King-ASR-867

录音时长:82.4小时

4.希腊语识别语音库-对话(Greek Conversational Speech Recognition Corpus)

该识别数据在安静办公室/家居环境中完成录制,共有106位发音人参与,包括53位男性和53位女性,所有参与录音的发音人均经过专业筛选,每2人一组进行自由对话录制,录音内容覆盖23个日常话题,如教育、旅行、家庭、宠物等。

产品库编号:King-ASR-885

录音时长:103小时

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值