深度学习——数据之间的形式转化

一、简介

在深度学习中,会用到各种各样的数据类型。有python中常用的list,使用numpy这个科学计算库时的numpy.ndarray,还有使用pytorch框架时的torch.Tensor。
使用数据时,经常需要进行各种数据形式之间的转换。

二、代码实践

1.list和numpy.ndarray之间的转化

# coding:utf-8

import numpy as np
import torch

# list和numpy.ndarray之间的转化
x_one = [[1, 2, 3], [4, 5, 6]]
print("x_one的数据为\n", x_one)
print("x_one的数据类型为", type(x_one))

# 将list数据转化为numpy.ndarray形式
x_two = np.array(x_one)
print("x_two的数据为\n", x_two)
print("x_two的数据类型为", type(x_two))

# 将numpy.ndarray转化为lisy形式
x_three = x_two.tolist()
print("x_three的数据为\n", x_three)
print("x_three的数据类型为", type(x_three))

在这里插入图片描述

2.list与tensor之间的转化

# coding:utf-8
import torch

x_one = [1, 2, 3, 4, 5]
print("x_one的数据为", x_one)
print("x_one的数据类型为", type(x_one))

# list转torch.Tensor
x_two = torch.Tensor(x_one)
print("x_two的数据为", x_two)
print("x_two的数据类型为", type(x_two))

# torch.Tensor转list
x_three = x_two.tolist()
print("x_three的数据为", x_three)
print("x_three的数据类型为", type(x_three))

在这里插入图片描述

3.numpy.ndarray和tensor之间的转化

# coding:utf-8

import torch
import numpy as np

# numpy.ndarray
# 造数据
data_one = np.arange(6).reshape(2, 3)
print("data_one的数据为\n", data_one)
print("data_one的数据类型为", type(data_one))

print("-" * 100)
# numpy.ndarray转化为tensor
data_two = torch.from_numpy(data_one)
print("data_two的数据为\n", data_two)
print("data_two的数据类型为", type(data_two))

print("#" * 100)
# tensor转化为numpy.ndarray
data_three = data_two.numpy()
print("data_three的数据为\n", data_three)
print("data_three的数据类型为", type(data_three))

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值