大图算法——《Computing top-k temporal closeness in temporal networks》论文随记

本文探讨了在时间图中计算节点紧密性中心性的方法,特别是时间紧密性。提出了基于标签设置的最快路径算法来计算精确的顶部k时间紧密性值,并在真实世界数据集上优化了运行时间。此外,通过启发式修改进一步减少了计算时间,同时保持了高精度。实验表明,这些新方法在许多情况下能有效地找出时间图中最相关的顶点,提高了效率。

一. 总体概述

        了解关于图的紧密中心性(The closeness centrality)的定义,同时学习了时序(子)图的概念。作者在这篇文章中,使用标签设置策略设计了一种最快路径的算法来计算精确的顶部k时间紧密性并且找到相应的顶点,并且在真实世界数据集中运行时间得到改进。此外,导出了在真实数据集上表现良好的启发式修改,并大大减少了运行时间,只导致了所有数据集的很小错误。对于所有边的边遍历所需时间相等的情况,我们将两种近似算法提升到时域,估计可达顶点的数量以及近似所有顶点的接近度。在真实世界数据集上对我们的所有新方法进行了实验评估,并表明在许多情况下,它们在保持高质量的同时大大减少了运行时间。同时也证明top-k时间紧密性相比其他的方法更有效的找到时间图中最相关的顶点。

二.重要概念总结

  • Closeness Centrality(紧密性中心性):是一种检测能够通过子图有效传播信息的节点的方法。紧密性中心性计量一个节点到所有其他节点的紧密性(距离的倒数),一个拥有高紧密性中心性的节点拥有着到所有其他节点的距离最小值。其中 u 是我们要计算紧密性中心性的节点,n 是网络中总的节点数,d(u,v) 代表节点 u 与节点 v 的最短路径距离。更常用的公式是归一化之后的中心性,即计算节点到其他节点的平均距离的倒数。

  • Harmonic Centrality(调和中心性):针对非连通图计算中心性

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值