如何制作打首板的量化策略

打首板,目前大多数都以量化机器人为主,下面就简单介绍一下,一个量化首板机器人的制作过程:
打首板,要解决两个问题:
1.炸板率
2.隔天溢价
第一步:炸板率问题:首先我们先用tushare的数据接口对于所有的股票最近两年的历史数据全部分析一遍,从中挑出炸板率低于70%的股票数据。筛选规则为:如果当日最高价等于涨停价等于收盘价,则正样本+1,如果当日最高价等于涨停价但是高于收盘价,则被认为是炸板,则负样本+1,然后针对每个股票的炸板率进行统计。以000788为例,其股票数据截图如下:
在这里插入图片描述
然后讲筛选后的股票加入到股票的自选池中,这些股票被认为是股性比较好的股票。
第二步:溢价率问题:
将炸板率低的股票隔天的中位数,作为我们的交易价格,计算溢价率,将平均溢价率小于1.0%的股票剔除,剩下的就是我们自选池的所有股票了
第三步:交易接口,将股票数据导入量化交易平台中,然后涨停价触发自动挂单,这样子,一个最简单的首板交易系统就算是做好了
后续如果改进的话,可以考虑把大盘指数和情绪因子加进来,大盘好的时候炸板率低,溢价率高,然后把机器学习模型导入进来,可以在9.5%的时候触发自动挂单,直接扫板

Python量化代码是指利用Python编程语言编写的一段代码,用于进行量化交易策略的设计和回测。打是指在股票市场中选择并集中投资一些块,以获取较高的市场收益。 Python量化代码的编写通常包括以下几个步骤: 第一步是数据获取和处理。Python可以通过调用各种数据接口获取股票市场的实时行情、历史交易数据和其他相关数据。这些数据可以通过数据处理和清洗的步骤进行预处理,例如去除异常值、调整数据格式等。 第二步是策略设计。根据量化交易的原理和策略设计的目标,编写Python代码来实现策略逻辑。这包括选择打块的规则、买卖信号的生成和交易条件的判定等。 第三步是回测和优化。使用历史数据对编写策略进行回测,即通过模拟交易来评估策略的效果。在回测过程中,可以通过调整参数、添加风控条件等手段对策略进行优化,以提升其稳定性和盈利能力。 第四步是实盘操作。在通过回测验证策略的有效性后,可以将代码应用到实际的交易中。Python提供了丰富的交易接口和工具,可以方便地连接到券商的交易系统,实现自动化交易。 总之,Python量化代码是通过使用Python编程语言来实现量化交易的策略和操作的代码。它的编写需要包括数据获取和处理、策略设计、回测和优化以及实盘操作等步骤。通过使用Python的强大功能和丰富的第三方库,可以实现高效、可靠的量化交易策略
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值