需求
之前给领导画饼,说是要搞个智能大模型助手,这不就得实现这个饼了。 简单讲讲这个需求:
- 能根据喂给它的文件的内容进行回答
- 能进行编排(温度,敏感词过滤等)
- 能暴露成API和WebApp
技术选型
经过综合考量,LLM部署和推理框架选用 (Xinference)
LLMOps平台选用Dify.AI · The Innovation Engine for Generative AI Applications
这个是国人写的,支持企业级部署
大模型使用 智谱清言 (chatglm.cn)
不多说,清华的
安装
基础环境
基础环境需要Python39 pip、docker
Xinference
安装可以参考:部署快捷、使用简单、推理高效!大模型部署和推理框架 Xinference 来了!_大模型部署框架-CSDN博客
以及官方文档安装 — Xinference
值得注意的是,安装Xinference之后会安装会自动安装PyTorch,和对应的CUDA,此时你需要自己检查下是否安装正确
Dify
这个直接用Docker-compose即可
- 将源码拉下来
- 找到源码对应的docker目录,使用docker-compose启动
简单使用
这里会简单搞1个Node小助手
首先进入Xinference把模型跑起来,启动命令
xinference-local
之后找到想要的模型,点击run,初次会需要下载,建议最好跑在Nvidia的GPU上。
跑起来后,通过左侧RunningModels菜单,可以看到正在跑的模型 点击右侧即可进入WebApp(就是日常使用GPT的聊天窗)
想要进一步得出想要的小助手,需要对模型进行编排,这时候就需要请出Dify,启动后,进入到Nginx容器的地址,进入设置,对接好Xinference。
之后创建应用
可以看到这里用了知识库,先在Xinference里跑起Embedding 模型,作用是将文本转换为向量
然后跑Rerank 模型,用来对文本进行排序
最后回到Dify,创建知识库,选择好对应的模型,
之后在回到模型编排,将对应的知识库放进上下文里,提示词写上按上下文回答。
发布后打开概览,可以看到你的APP和API
点击APP的预览,进入到熟悉的聊天窗
至此,本地部署大模型就完成了,当然这套也可以部署在服务器上,只需要选择对应的Linux的版本,以及确保网络的通畅。
值得提醒的是:硬件一定要好,否则不但达不到你对大模型的预期,搭建过程也会困难重重
那么,我们该如何学习大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
一、大模型全套的学习路线
学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。
L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署
一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。
以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。