我们为什么要用大语言模型来迭代数据安全能力?

在当今科技飞速发展的时代,大语言模型无疑是最炙手可热的话题之一。从 OpenAI 的 GPT 系列到谷歌的 BERT,这些拥有海量参数的模型宛如智能巨人,正重塑着自然语言处理(NLP)的格局。

你或许好奇,大语言模型究竟为何如此备受瞩目?这得从自然语言处理领域的核心任务 —— 文本分类说起。文本分类,就像是给五花八门的文本信息贴上合适的 “标签”,无论是判断一封邮件是正常邮件还是垃圾邮件,分析社交媒体上的评论是积极、消极还是中性情绪,亦或是将新闻文章精准归类到不同的主题板块,它的应用场景广泛得超乎想象,已然渗透到我们生活与工作的方方面面。而大语言模型的出现,恰如一场及时雨,为文本分类带来了前所未有的革新。

NO.1 高成本与低效率的枷锁(传统方法之殇)

在大语言模型崭露头角之前,文本分类主要依赖传统机器学习和深度学习。传统的文本分类流程,宛如一条繁琐的流水线,包含数据收集、预处理、特征提取、维度缩减、分类器选择以及模型评估等诸多环节。

就拿数据预处理来说,要进行分词、去除标点符号、停用词过滤、词干提取以及词形还原等一系列精细操作,每一步都需要专业知识与丰富经验,稍有差池就可能影响最终结果。这整个过程就像一场漫长而艰难的马拉松,需要投入大量的人力、时间和计算资源。

并且,当面对不同领域、不同格式的数据集时,这些传统方法往往需要重新调整参数、重新训练模型,适应性较差,效率极其低下,难以满足当今快速发展的时代需求。

NO.2 赋能文本分类的神奇力量(大语言模型)

一、卓越的语言理解基石

大语言模型之所以能在文本分类领域大显身手,首要归功于其对语言的深刻理解能力。它们经过在海量文本数据上的预训练,如同一位饱览群书的学者,对语法、语义、语用等方面的知识信手拈来。无论是复杂句式的剖析、一词多义的精准识别,还是隐喻、暗示等隐含信息的捕捉,大语言模型都展现出超凡实力。

二、多样的应用模式

1、 零样本学习:智能初体验

在零样本学习模式下,大语言模型宛如一位知识渊博的通才,凭借预训练阶段积累的丰富知识,无需针对特定分类任务进行专门训练,就能应对自如。当我们想要判断一篇科技文章的主题时,只需向模型提问:“这篇文章属于人工智能、生物科技还是其他领域?” 模型便能依据其固有知识储备,给出合理分类。

这就好比询问一位博古通今的智者,他能凭借深厚的学识底蕴,对各种问题给出见解,无需提前预习。不过,这种方式虽便捷智能,但其准确性和可靠性有时会像飘忽不定的风,受到模型知识局限、文本复杂性等因素影响,偶尔出现偏差。

2、 少样本学习:精准提升秘诀

少样本学习,则像是为模型开启了一扇快速适应新任务的大门。通过向模型展示每个类别下的少量典型示例,模型就能迅速捕捉到任务关键特征,实现分类准确率的显著跃升。

就好比教一个聪明的孩子认识水果,只需给他展示几个苹果、香蕉、橙子的样本,他就能举一反三,辨别出更多未曾见过的水果。在实际应用中,对于一些新兴领域或小众类别文本分类,少样本学习让大语言模型能够快速上手,以极小的数据量换取高效的分类成果,展现出强大的适应性与灵活性。

3、微调:定制化的王牌

当面对专业性强、要求极高的文本分类任务时,微调就成了大语言模型的制胜法宝。通过将模型在大规模通用数据上的预训练成果,与特定领域数据集相结合,进行针对性训练,模型得以深入理解任务细节,输出高度贴合需求的分类结果。

比如在医学文献分类领域,利用大量专业医学文献对模型微调后,它就能精准区分心血管疾病、肿瘤学、免疫学等不同细分领域的论文,就像一位专业的医学图书馆管理员,将繁杂的医学资料有条不紊地归类。这种定制化训练使得大语言模型在复杂、专业的文本分类场景中,能够达到令人惊叹的高精度,为各行业提供强有力的智能支持。

NO.3 在文本分类实践中的辉煌战绩(大语言模型)

1、 社交媒体情绪洞察

举个例子,某知名手机品牌发布新品后,社交媒体瞬间被海量讨论淹没。大语言模型快速介入,对数十万条评论进行分析,清晰呈现出用户对手机外观设计、拍照功能、性能续航等各个方面的满意度分布。

品牌方依据这些精准洞察,第一时间知晓用户的痛点与喜好,为后续产品优化、宣传重点调整提供了极具价值的参考,如同在黑暗中找到了指引方向的明灯。

2、垃圾信息的 “过滤网”

在信息爆炸的时代,垃圾邮件、虚假新闻、恶意广告等垃圾信息如洪水猛兽般侵袭着我们的生活与工作空间。面对一封看似正规实则暗藏诈骗链接的邮件,或是一篇东拼西凑、传播不实信息的新闻稿件,模型通过对文本特征、语言风格、来源可信度等多维度分析,迅速识破其伪装,将这些有害信息拦截在外。

NO.4 挑战与应对策略共舞(大语言模型)

一、前行的 “拦路虎”: 成本之困

大语言模型虽神通广大,但其训练与运行成本,恰似一座难以逾越的高山,横亘在前进道路上。一方面,训练这些模型需要海量的计算资源,宛如一个永远填不满的 “能源黑洞”。

在实际应用中,尤其是对模型进行微调时,企业或研究机构同样需要投入大量资金购置高性能的 GPU 服务器,组建专业的技术团队,才能让模型适应特定任务需求。对于许多中小企业而言,如此高昂的成本就像一道无法跨越的门槛,只能望 “模” 兴叹,被阻挡在大语言模型赋能的大门之外,难以享受到这一前沿技术带来的红利。

二、破局的利刃:模型 “瘦身”

合理选择模型参数,避免参数冗余,就像为模型 “瘦身”,使其在不损失性能的前提下,降低对硬件资源的依赖。

再者,优化数据利用效率也是关键一环,通过数据增强技术,对有限的数据进行变换、扩充,让模型从少量数据中挖掘更多信息,以 “小数据” 撬动 “大智能”,使得模型训练成本得到有效控制,为更多企业与机构开启大语言模型应用的大门,让其不再受困于资金与算力的泥沼。

NO.5 无限可能的星辰大海(展望未来)

在数据安全领域,传统防护手段面对新挑战渐显不足。大语言模型的出现带来转机,其凭借在海量文本数据上预训练获得的强大语言理解能力,可解读安全协议、挖掘攻击隐情。在应用模式上,零样本学习能对常见安全问题初步判断;少样本学习可快速适应新场景,精准识别如新型钓鱼邮件等威胁;微调能针对行业定制安全分析与防护建议,像金融领域识别交易风险。实战中,可分析企业内部日志、监测外部网络情报。

大语言模型在数安领域已然迈出了坚实且震撼的步伐,为我们开启了一扇通往智能化数据安全的全新大门。但这仅仅只是一个开始,未来的征途是星辰大海,充满着无尽的想象与可能。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值