想要部署属于自己的大模型,会不会很困难?其实不是的,现在是越来越简单。
今天就做一个简单的示范,让大家都能轻松搞定在自己的电脑哦上,本地化部署并运行私有化大模型,并且为我们自己的大模型投喂数据。
这样,就可以建立自己的数据仓库,没错,就可以定制垂直行业或细分领域的私有化大模型了。
首先,我们会用到Ollama,功能是运行大模型。
Ollama是一款LLM也就是大型语言模型服务工具,可以极大简化在本地运行大语言模型,极大降低了使用大语言模型的门槛,而且是开源的哦。
目前Ollama支持的大语言模型有:Llama 3、Phi 3、Mistral、Gemma、Neural Chat、Starling、LLaVA、Solar等,当然也包括我们今天演示的Qwen2.5开源大模型。
其次,是Qwen2.5(通义千问)开源大模型。
Qwen(通义千问)是阿里巴巴旗下的大语言模型,具有70亿参数规模,基于Transformer研发。
最后,是AnythingLLM,大模型增强应用,用来做界面化的交互,同时也可以处理文本标记,以及向量数据存储,这样我们就可以给自己部署的大模型投喂数据了。
OK,正式开始!
首先,我们来下载Ollama,官网是:https://ollama.com/
按照页面现实,点击“Download”按钮,进入下载页面。
Ollama支持macOS、Linux和我们常用的Windows操作系统,按照自己电脑安装的操作系统进行选择就可以了。
我用的是Windows 11。
文件并不大,只有700多M,安装软件下载到本地后,直接双击进行安装!
安装软件不复杂,相信各位都能顺利完成。
安装成功后,系统会自动进入命令提示符界面。
现在我们下载AnythingLLM,官网地址是:https://anythingllm.com/
同样的,我们根据自己电脑操作系统,选择对应的安装程序进行下载。
不到300M的安装程序,很快就可以下载下来了。
安装过程和常规软件安装差不多,按照提示进行安装即可。
接下来,咱需要安装一个大模型,今天演示安装通义千问(Qwen)大模型。
在Ollama官网,搜索“Qwen”,如下图所示。
我们选择“qwen2.5”。
在出现的页面中,我们选择复制这段命令,或者直接在命令提示那里输入也可以。
回车后,命令开始执行。
系统会自动开始下载Qwen2.5大模型,文件有点大,4.7G,所以,需要耐心等待一下。
安装成功了,如下图:
这时,我们就可以向大模型提问了,比如:
好了,现在我们还差一个友好的交互界面。
我们打开AnythingLLM,来设置界面化的操作模式。
首先我们先对它进行相关配置的设置。点击左下角的设置按钮。
LLM首选项要选“Ollama”,模型选:Qwen2.5:latest,其它选项可以设置为默认值就可以了。
向量数据库设置,根据实际情况选择即可,这里我们选择了默认的LanceDB。
接下来,嵌入首选项设置,嵌入引擎提供商我们选择Ollama,Ollama Embedding Model我选择的是:nomic-embed-text。
nomic-embed-text是需要提前安装的,安装方法也很简单,在Ollama官网搜索nomic-embed-text,然后复制执行代码,在命令提示符状态下进行执行即可。
复制代码,并执行,系统会进行自动下载并安装。
如果我们要给大模型投喂数据,那么投喂的数据都需要先进行向量化处理,而nomic就是对文本进行向量化处理的工具。
返回上一步的操作界面,我们来创建一个工作区,任意命名这个工作区即可。
我们对这个工作区做一个简单的设置,选择“聊天设置”,同理,要设置成Ollama和Qwen2.5。
接下来设置“代理设置”,一样的配方,一样的味道。
都设置完成后,也象征着我们顺利完成了本地大模型部署,现在可以和它进行对话了哦。
激动的心,颤抖的手,可以在对话框里开始提问了哦~~~
OK,搞定,手工~
且慢,如果我们想投喂数据该怎么操作?
我们只需点击“设置”按钮旁边的这个按钮,即可进入投喂数据操作界面。
投喂操作界面如下:
点击上传文件就可以了。
上传文件后,系统会进行向量化处理,处理后保存,那么下次提问,就可以检索出我们投喂的数据了。
比如,我随便编排了一段文字,然后投喂进去。
这个“锻炼项目”是我瞎编的。
接下来我们再向它提问,它的回答就已经有了我们投喂的数据。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。