《大模型应用落地白皮书:企业AI转型行动指南》由火山引擎与IDC联合发布,核心观点围绕大模型技术与企业业务融合展开,旨在为企业AI转型提供指引。
-
大模型加速从探索走向落地:大模型技术推动AI应用升级,企业对其关注度和投资持续增加,积极拓展试点范围。大模型为企业带来多维价值,涵盖员工、用户、营收和市场等方面,提升工作效率、创新用户体验、推动产品服务升级等,坚定了企业探索其潜力的决心。
-
企业落地面临的挑战与机遇:大模型落地面临高成本、模型选配难、部署落地细节复杂、安全风险与可解释性等多重挑战。尽管如此,先行落地的企业已获得明显收益,如提升工作效率、增强市场竞争力等,收益曲线表明企业对大模型拥抱程度越高,收益越明显。
-
构建全方位的大模型业务落地能力:企业需构建全方位落地能力,分为计划准备、模型部署、迭代优化三个阶段。计划准备阶段明确初始意愿、剖析目标任务并搭建跨部门团队;模型部署阶段涉及资源投入、模型选择、效果预测等关键步骤;迭代优化阶段注重智能体应用效能提升、业务拓展和战略规划调整。同时,企业要破除落地过程中的思维误区,正确看待技术指标、成本、开发流程等问题。
-
大模型深入众多应用场景:大模型应用场景不断拓宽,涵盖金融、互联网、零售消费等多个领域,在知识管理、智能服务等方面应用广泛。众多行业企业积极实践,如赛力斯、上汽乘用车等,借助大模型提升用户反馈处理效率,优化业务决策,取得显著成效。
-
跨越大模型落地技术难题:企业落地大模型需考虑资源投入、模型选择、效果评估等多个技术步骤。精准选模、高效落地、持续挖掘是关键,选择合适模型、一站式服务平台和合作伙伴,能确保大模型与业务需求匹配,解决部署难题,挖掘应用潜力。
-
火山引擎助力企业AI转型:火山引擎凭借豆包大模型、火山方舟平台、扣子和HiAgent等,为企业提供强大的技术支持。豆包大模型效果持续增强,适配多场景需求;火山方舟提供强劲承载力和全周期安全方案;扣子降低开发难度;HiAgent助力企业快速创新落地,推动企业AI转型进程。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。