2025年AI大模型谁能笑到最后?

前几天对比了几个问题,国外的O3、Claude算是最好的,其次是grok。

国内的DeepSeek,qwen,其次就是kimi,豆包。

img

qwen,无论是微调还是推理都非常稳健,是我微调模型首选,

kimi,我处理长文本进行了比较,用下来kimi 128b的极好,如果充值的话,可以和幻觉的R1和V3相媲美。

Qwen不如豆包一坨,国内这些ai都处于“难用”状态,但架不住豆包最“人性化”,尤其是语音拟人,直接秒全场。豆包是最适合生活场景的。

这几个相信也一定能活下来的。现在也是事实意义上的三巨头。腾讯,华为,百度不会放弃大模型的研发,这仨现在虽然菜但是生态和基础设施都特别好,毕竟要么有庞大的数据池,产品基础和用户基础,要么有自研芯片的能力。

再说说智谱轻言,也是后起之秀的达模型来,一直在追赶,也不会放弃,毕竟自己有科研基础,但是没卡没钱没自己的产品形成闭环后续很难搞。

混元就是一坨,刚开始的时候,混元大模型的T1蠢得不行,是抄都抄不会,直接就是个跟跑,不掉队,等肉吃的,恶心人的主。现在直接接入了微信,前几天我体验了一把,现在也是越来越老了

有人说是deepSeek,也不是没有道理。

deepseek之前一直不如Qwen,哪知R1出来后,直接把Qwen碾压了,国内这波厂子,原本是百花齐放,被扫地僧默念全,直接被迫全部抄R1开源。从百花齐放,变成一枝独秀,现在国内这些AI 只要开深度思考,全是一股R1的中二科幻味。

毕竟Deepseek是开源的,这不那些欧洲人拿回去改改,就能换个名字卖钱了,然后欧洲牌子很多人还是相信的,现在可好了,欧洲那些家伙当然会说deepseek的好话。

这样一来,各个国家,各个大厂都可以部署自己的大模型,进行各种自动化的工作来尽可能的减少人工的操作了。。。。。。

但是AI 暴露出一个问题,那就是很多高收入工作其实很简单,而很多低收入工作很复杂、困难。

你还真别说,简单的开车,画画AI都取代了。现在的基础编程,一些基础的客服,很多公司通过大模型的智能体来进行代替工人客服,节约了上百万的成本,一些数据分析的岗位,用大模型进行分析,从人工的2天,到现在的5分钟…

所以,我一直建议让大家进入这个大模型行业,只要你去肯学习,不出3个月,就能结合自己的专业领域分得一杯羹

这不,下面的这个大模型在线进阶视频,可以让你获得以下几个收获,比如:

  • 主流大模型deepseek,O3模型,Clude的底层算法原理
  • 大模型的LangChain+Fine-tunet、4o-mini-tts的相关技术
  • MOE架构模型,以及大模型底层训练
  • 结合自己的专业领域,利用大模型打造自己的AI智能体
  • 更能学习常见大模型面试的技术问题

这些能帮助你构建完整的LLM框架,从基础概念到实践应用,节省不少摸索时间。知学堂的这个免费公开课正好提供了这么一个机会:

另外,这里面的老师还能给你分享LLM的30套可微调的大模型源码给你调试,很多知友学习完三周就利用源码进行改造,并且结合学习的知识成功部署了自己的AI agent,在面试的时候也把面试官给惊呆了,offer也是当场就给定下了,简直可以说是选择了好的方向,比努力更重要。

但是有一点值得一提的是,deepSeek只是符合开源协议,并不是完全开源,而且一旦用了ds的技术架构,后续就会受制于ds,相当于为ds添砖加瓦,这正是ds喜闻乐见的,ds之所以开源,就是为了这个

至于国外,可能有人战队Google的gemini AI

其实Google 很看重云业务,只要你用我的cloud,你的模型很强也可以~tpu使用成本比gpu便宜多了,就是jax写起来麻烦,不过a家这些初创用的也不少,你用a的模型Google 依然在后面赚。我觉得狗家吃相比Nvidia强太多了,这么多年各种服务都是划算的

对于数据而言,谷歌不仅整个互联网的文字数据,他还有互联网不同时期的文字数据,还有世界上最大的视频网站,所以谷歌的Gemini也是被大家看好的

有人在吹Claude,从我最近的一段时间来使用Claude3.7 gemini 2.5 pro还有qwen,各种用来对比,gemini的指令理解能力是最差的。

让总结个知识点,内容倒是问题不大,但是总是不按指令来。当然Gemini对长文本处理的能力和Claude差不多,这两者比其他的要强很多,代码能力还是Claude目前还是让我很满意的。

但是话说回来,在指令遵循方面,Claude确实还是最强,但是Gemini在debug尤其是复杂工程的debug上能力要强得多,可能是思维发散能力比较强。再加上现在免费而且百万token上下文,两个一起用其实是最舒服的

有人看重O3大模型,目前它的AI进度搞的很快,原本我还以为o3可能会保持一年左右的sora,毕竟gpt4保持了1年半,现在看估计几个月模型水平都能提升一个档次,o3满血版估计也就是4月份的sota,就像o3 mini接近满血版o1一样,推理可能更强,但知识可能差点 上半年很可能被gpt5超越。下半年估计o系列还能再迭代1-2次,年底估计都是o5了

不管怎样,接下来,我相信会有更多的国家,更多的公司去打造自己的大模型。就像这次deepseek的开源真的是最好的阳谋。

img

大多数中等国家都可以拥有自己的AI大模型了,拿去改改就是自己的,然后确实很多第三国家是相信欧洲牌子的,这下可以割第三世界国家的韭菜了,说到底,大多数的AI还是挑了“容易”的路走。那就是利用开源的优势,进行蒸馏…

现在国内AI已经被deepseek一统江湖了,只能看字节阿里的程序员有没有骨气,是不是甘愿在deepseek胯下输出。

其实我也是看好DeepSeek,DP的开源就跟当初的安卓一样,一旦全世界大规模部署了,deepseek 本身就握有主动权了,核心技术在自己手里,永远占据主动权。

毕竟在这个时代,谁能有核心技术,谁就能站直腰板说话~

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值