大模型是什么?大模型综述,看这一篇就够了!

1、大模型的定义

大模型(Large Models)通常指参数规模庞大(通常在十亿到万亿级别)的深度学习模型。这类模型通过在大规模数据集上进行训练,具备强大的泛化能力和复杂的任务处理能力,尤其在自然语言处理(NLP)、计算机视觉(CV)和多模态任务中表现突出。例如,GPT-3(1750亿参数)和PaLM(5400亿参数)是典型的大模型。

那么,大模型和小模型有什么区别?

大模型 vs. 小模型:核心区别

维度大模型小模型
参数规模十亿到万亿级(如GPT-3:175B)百万到十亿级(如BERT-base:110M)
训练数据海量数据(TB级文本、图像等)较小规模(GB级)
计算资源需要分布式GPU/TPU集群,训练耗时数周至数月单卡或少量GPU即可训练,耗时短
应用场景通用任务(文本生成、复杂推理、多模态交互)专用任务(分类、实体识别、轻量级部署)
部署成本高昂(需云端算力支持,推理延迟高)低成本(可嵌入手机、IoT设备)
能力特点涌现能力(如零样本学习、上下文理解)依赖任务微调,泛化能力有限

2、 大模型相关概念区分:

大模型(Large Model,也称基础模型,即 Foundation Model),是指具有大量参数和复杂结构的机器学习模型,能够处理海量数据、完成各种复杂的任务,如自然语言处理、计算机视觉、语音识别等。

超大模型:超大模型是大模型的一个子集,它们的参数量远超过大模型。

大语言模型(Large Language Model):通常是具有大规模参数和计算能力的自然语言处理模型,例如 OpenAI 的 GPT-3 模型。这些模型可以通过大量的数据和参数进行训练,以生成人类类似的文本或回答自然语言的问题。大型语言模型在自然语言处理、文本生成和智能对话等领域有广泛应用。

GPT(Generative Pre-trained Transformer):GPT 和 ChatGPT 都是基于 Transformer 架构的语言模型,但它们在设计和应用上存在区别:GPT 模型旨在生成自然语言文本并处理各种自然语言处理任务,如文本生成、翻译、摘要等。它通常在单向生成的情况下使用,即根据给定的文本生成连贯的输出。

ChatGPT:ChatGPT 则专注于对话和交互式对话。它经过特定的训练,以更好地处理多轮对话和上下文理解。ChatGPT 设计用于提供流畅、连贯和有趣的对话体验,以响应用户的输入并生成合适的回复。

预训练模型(Pre-trained Models) 在大规模数据上预训练的模型(如BERT、GPT),可通过微调适配下游任务。大模型多为预训练模型,但小模型也可预训练。

基础模型(Foundation Models) 斯坦福提出的概念,指通过自监督学习在大规模数据上训练、可适应多种任务的模型(如GPT-3)。大模型是基础模型的子集。

多模态模型(Multimodal Models) 处理多种输入(文本、图像、音频)的模型(如CLIP、DALL·E)。大模型常具备多模态能力,但小模型也可设计为多模态。

生成式AI(Generative AI) 专注于生成内容的模型(如GPT、Stable Diffusion)。大模型常为生成式,但生成式模型不一定“大”(如小型GAN)

3、 大模型的发展历程

img

添加图片注释,不超过 140 字(可选)

萌芽期(1950-2005):以 CNN 为代表的传统神经网络模型阶段

  • 1956 年,从计算机专家约翰·麦卡锡提出“人工智能”概念开始,AI 发展由最开始基于小规模专家知识逐步发展为基于机器学习。
  • 1980 年,卷积神经网络的雏形 CNN 诞生。
  • 1998 年,现代卷积神经网络的基本结构 LeNet-5 诞生,机器学习方法由早期基于浅层机器学习的模型,变为了基于深度学习的模型,为自然语言生成、计算机视觉等领域的深入研究奠定了基础,对后续深度学习框架的迭代及大模型发展具有开创性的意义。

探索沉淀期(2006-2019):以 Transformer 为代表的全新神经网络模型阶段

  • 2013 年,自然语言处理模型 Word2Vec 诞生,首次提出将单词转换为向量的“词向量模型”,以便计算机更好地理解和处理文本数据。
  • 2014 年,被誉为 21 世纪最强大算法模型之一的 GAN(对抗式生成网络)诞生,标志着深度学习进入了生成模型研究的新阶段。
  • 2017 年,Google 颠覆性地提出了基于自注意力机制的神经网络结构——Transformer 架构,奠定了大模型预训练算法架构的基础。
  • 2018 年,OpenAI 和 Google 分别发布了 GPT-1 与 BERT 大模型,意味着预训练大模型成为自然语言处理领域的主流。在探索期,以 Transformer 为代表的全新神经网络架构,奠定了大模型的算法架构基础,使大模型技术的性能得到了显著提升。

迅猛发展期(2020-至今):以 GPT 为代表的预训练大模型阶段

  • 2020 年,OpenAI 公司推出了GPT-3,模型参数规模达到了 1750 亿,成为当时最大的语言模型,并且在零样本学习任务上实现了巨大性能提升。随后,更多策略如基于人类反馈的强化学习(RHLF)、代码预训练、指令微调等开始出现, 被用于进一步提高推理能力和任务泛化。

  • 2022 年 11 月,搭载了GPT3.5的 ChatGPT横空出世,凭借逼真的自然语言交互与多场景内容生成能力,迅速引爆互联网。

  • 2023 年 3 月,最新发布的超大规模多模态预训练大模型——GPT-4,具备了多模态理解与多类型内容生成能力。在迅猛发展期,大数据、大算力和大算法完美结合,大幅提升了大模型的预训练和生成能力以及多模态多场景应用能力。如 ChatGPT 的巨大成功,就是在微软Azure强大的算力以及 wiki 等海量数据支持下,在 Transformer 架构基础上,坚持 GPT 模型及人类反馈的强化学习(RLHF)进行精调的策略下取得的。

4、大模型的特点

参数规模超大

  • 量级:参数量从十亿(B)到万亿(T)级别,例如GPT-3(175B)、PaLM-2(340B)。
  • 意义:参数规模直接影响模型的“记忆容量”和复杂模式捕捉能力,是涌现(Emergence)能力(如逻辑推理、上下文学习)的基础。

训练数据海量

  • 数据量:通常使用TB级文本、图像等多模态数据(如GPT-3训练数据约45TB)。
  • 多样性:覆盖多语言、多领域(网页、书籍、代码等),降低模型对特定任务的过拟合风险。

计算资源密集

  • 训练成本:需数千张GPU/TPU并行训练数周,如GPT-3训练成本约460万美元。
  • 能耗问题:单次训练碳排放可达数百吨(如Bloom模型训练排放25吨CO₂)。

通用任务泛化

  • 少样本/零样本学习:无需微调即可完成新任务(如GPT-4直接生成代码)。
  • 多任务统一:同一模型处理文本生成、翻译、问答等多种任务(如PaLM-2)。

涌现能力(Emergent Abilities)

  • 不可预测性:模型在达到一定规模后突现出设计时未明确编程的能力,如:
  • 上下文学习(In-context Learning):通过示例提示调整输出。
  • 思维链(Chain-of-Thought):分步骤推理解决数学问题。
  • 跨模态对齐:理解文本与图像的语义关联(如CLIP)。

5、大模型的分类

按照输入数据类型的不同,大模型主要可以分为以下三大类:

img

添加图片注释,不超过 140 字(可选)

  • 语言大模型(NLP):是指在自然语言处理(Natural Language Processing,NLP)领域中的一类大模型,通常用于处理文本数据和理解自然语言。这类大模型的主要特点是它们在大规模语料库上进行了训练,以学习自然语言的各种语法、语义和语境规则。例如:GPT系列(OpenAI)、Bard(Google)、文心一言(百度)。
  • 视觉大模型(CV):是指在计算机视觉(Computer Vision,CV)领域中使用的大模型,通常用于图像处理和分析。这类模型通过在大规模图像数据上进行训练,可以实现各种视觉任务,如图像分类、目标检测、图像分割、姿态估计、人脸识别等。例如:VIT 系列(Google)、文心UFO、华为盘古 CV、INTERN(商汤)。
  • 多模态大模型:是指能够处理多种不同类型数据的大模型,例如文本、图像、音频等多模态数据。这类模型结合了 NLP 和 CV 的能力,以实现对多模态信息的综合理解和分析,从而能够更全面地理解和处理复杂的数据。例如:DingoDB 多模向量数据库(九章云极 DataCanvas)、DALL-E(OpenAI)、悟空画画(华为)、midjourney。

按照应用领域的不同,大模型主要可以分为 L0、L1、L2 三个层级:

  • 通用大模型 L0:是指可以在多个领域和任务上通用的大模型。它们利用大算力、使用海量的开放数据与具有巨量参数的深度学习算法,在大规模无标注数据上进行训练,以寻找特征并发现规律,进而形成可“举一反三”的强大泛化能力,可在不进行微调或少量微调的情况下完成多场景任务,相当于 AI 完成了“通识教育”。
  • 行业大模型 L1:是指那些针对特定行业或领域的大模型。它们通常使用行业相关的数据进行预训练或微调,以提高在该领域的性能和准确度,相当于 AI 成为“行业专家”。
  • 垂直大模型 L2:是指那些针对特定任务或场景的大模型。它们通常使用任务相关的数据进行预训练或微调,以提高在该任务上的性能和效果。

6、大模型的泛化与微调

模型的泛化能力:是指一个模型在面对新的、未见过的数据时,能够正确理解和预测这些数据的能力。在机器学习和人工智能领域,模型的泛化能力是评估模型性能的重要指标之一。

什么是模型微调:给定预训练模型(Pre-trained model),基于模型进行微调(Fine Tune)。相对于从头开始训练(Training a model from scatch),微调可以省去大量计算资源和计算时间,提高计算效率,甚至提高准确率。

模型微调的基本思想是使用少量带标签的数据对预训练模型进行再次训练,以适应特定任务。在这个过程中,模型的参数会根据新的数据分布进行调整。这种方法的好处在于,它利用了预训练模型的强大能力,同时还能够适应新的数据分布。因此,模型微调能够提高模型的泛化能力,减少过拟合现象。

常见的模型微调方法:

  • Fine-tuning:这是最常用的微调方法。通过在预训练模型的最后一层添加一个新的分类层,然后根据新的数据集进行微调。
  • Feature augmentation:这种方法通过向数据中添加一些人工特征来增强模型的性能。这些特征可以是手工设计的,也可以是通过自动特征生成技术生成的。
  • Transfer learning:这种方法是使用在一个任务上训练过的模型作为新任务的起点,然后对模型的参数进行微调,以适应新的任务。

大模型是未来人工智能发展的重要方向和核心技术,未来,随着 AI 技术的不断进步和应用场景的不断拓展,大模型将在更多领域展现其巨大的潜力,为人类万花筒般的 AI 未来拓展无限可能性。

本文将继续深入探讨大型语言模型(LLMs)的迷人世界,以及它们理解和生成类似人类语言的不可思议能力。我们将讨论这些模型的历史和演变,涉及到重要的里程碑,如GPT系列及其后继模型。我们还将探索不同类型的LLMs、它们的应用以及支撑许多先进模型的Transformer架构的内部工作原理。此外,我们还将探讨人类引导强化学习等前沿进展以及它如何提升人工智能性能。通过本文的阅读,您将对大型语言模型有一个全面的了解,了解它们的巨大潜力以及这一开创性技术的令人兴奋的未来。

7、那什么是大型语言模型?

当我们谈论大型语言模型时,我们指的是一种能够以类似人类语言的方式“说话”的软件。这些模型非常惊人——它们能够获取上下文并生成不仅连贯而且感觉像是来自真实人类的回复。

这些语言模型通过分析大量的文本数据并学习语言使用的模式来工作。它们利用这些模式生成的文本几乎无法与人类所说或写的内容区分开来。

如果您曾与虚拟助手进行聊天或与人工智能客户服务代理进行互动,您可能会在不知不觉中与大型语言模型互动过!这些模型有广泛的应用,从聊天机器人到语言翻译到内容创作等。

一些最令人印象深刻的大型语言模型由OpenAI开发。例如,它们的GPT-3模型拥有超过1750亿个参数,能够执行摘要生成、问答甚至创作等任务!如果您仍然不确定这样的模型有多好,我建议您自己尝试一下Chat GPT。

第一个大型语言模型是什么?

正如我们前面提到的,当谈论大型语言模型时,我们基本上是在谈论擅长生成类似人类语言的软件。真正引起人们关注的第一个模型是OpenAI于2018年开发的GPT(Generative Pre-trained Transformer)模型。众所周知,ChatGPT基本上就是GPT-3.5。

GPT模型之所以如此特殊,是因为它是首批使用Transformer架构的语言模型之一。这是一种能够很好地理解文本数据中的长距离依赖关系的神经网络类型,使得该模型能够生成高度连贯和上下文相关的语言输出。拥有1.17亿个参数的GPT模型对自然语言处理领域产生了重大影响,真正改变了游戏规则。

此后,我们见证了更大、更令人印象深刻的语言模型的发展,如GPT-2、GPT-3和BERT。这些模型能够生成比GPT模型更复杂、更类似人类的文本。尽管GPT模型可能不再是最大或最好的模型,但它仍然是语言模型发展历程中的重要里程碑,并对自然语言处理领域产生了重大影响。

8、大型语言模型的类型有哪些?

有几种不同类型的大型语言模型,每种类型都有其自身的优点和缺点。

基于自编码器的模型(Autoencoder-Based Model)

一种类型的大型语言模型是基于自编码器的模型,它通过将输入文本编码为较低维度的表示,然后根据该表示生成新的文本。这种类型的模型在文本摘要或内容生成等任务中表现出色。

序列到序列模型(Sequence-to-Sequence Model)

另一种类型的大型语言模型是序列到序列模型,它接收一个输入序列(比如一个句子)并生成一个输出序列(比如翻译成另一种语言)。这些模型通常用于机器翻译和文本摘要。

基于Transformer的模型(Transformer-Based Models)

基于Transformer的模型是另一种常见的大型语言模型类型。这些模型使用一种神经网络架构,非常擅长理解文本数据中的长距离依赖关系,使其在生成文本、翻译语言和回答问题等各种语言任务中非常有用。

递归神经网络模型(Recursive Neural Network Models)

递归神经网络模型被设计用于处理结构化数据,如句子的句法结构表示。这些模型对情感分析和自然语言推理等任务非常有用。

分层模型(Hierarchical Models)

最后,分层模型被设计用于处理不同粒度级别的文本,例如句子、段落和文档。这些模型用于文档分类和主题建模等任务。

9、大型语言模型是如何工作的?

最知名的大型语言模型(LLM)架构是Transformer架构。典型的Transformer模型在处理输入数据时有四个主要步骤,我们将逐一讨论每个步骤:

首先,模型进行词嵌入,将单词转换为高维向量表示。然后,数据通过多个Transformer层进行传递。在这些层中,自注意机制在理解序列中单词之间的关系方面起着关键作用。最后,在经过Transformer层的处理后,模型通过根据学到的上下文预测序列中最可能的下一个单词或标记来生成文本。

img

添加图片注释,不超过 140 字(可选)

词嵌入(Word Embedding)

构建大型语言模型时,词嵌入是至关重要的第一步。它将单词表示为高维空间中的向量,使得相似的单词被归为一组。这有助于模型理解单词的含义,并基于此进行预测。

img

添加图片注释,不超过 140 字(可选)

例如,考虑到单词”猫”和”狗”,这两个词通常会比与之无关的另一对词,如”猫”和”汉堡”更接近。这些单词在它们都是常见的宠物,并且通常与毛茸茸和友好相关联方面具有相似性。在词嵌入中,这些词将被表示为在向量空间中彼此接近的向量。这使得模型能够认识到这两个词具有相似的含义,并可以在类似的语境中使用。有了这些说法,词嵌入的过程是如何执行的呢?

创建词嵌入涉及对大量文本数据进行神经网络训练,例如新闻文章或书籍。在训练过程中,网络学习根据单词在句子中的前后出现的词来预测其在给定上下文中出现的可能性。通过这个过程学习到的向量捕捉了语料库中不同单词之间的语义关系。类似的方法也适用于”国王”、”皇后”、”男人”和”女人”这样的词。

img

添加图片注释,不超过 140 字(可选)

一旦创建了词嵌入,它们可以作为输入传递给在特定语言任务上进行训练的更大的神经网络,例如文本分类或机器翻译。通过使用词嵌入,模型能够更好地理解单词的含义,并基于这种理解做出更准确的预测。

位置编码(Positional Encoding)

位置编码是帮助模型确定单词在序列中的位置的技术。它与单词的含义以及它们之间的关系无关,例如”猫”和”狗”之间的相似性。相反,位置编码主要用于跟踪单词的顺序。例如,当将句子”我喜欢猫”输入到模型时,位置编码可以帮助模型区分”我”是在句子的开头,而”猫”是在句子的结尾。这对于模型理解上下文和生成连贯的输出非常重要。

位置编码使用一系列特定模式的向量来表示单词的位置。这些向量与词嵌入的向量相加,以获得包含位置信息的表示。通过这种方式,模型能够将单词的位置作为输入的一部分,并在生成输出时保持一致。

自注意力机制(Self-Attention Mechanism)

自注意力机制是Transformer模型的核心组成部分。它允许模型在生成输出时,有效地在输入序列的不同位置进行交互和关注。自注意力机制的关键思想是计算输入序列中每个单词之间的相关性,并将这些相关性用于权衡模型在每个位置的关注程度。

具体来说,自注意力机制计算每个单词与其他单词之间的相似度,然后将这些相似度转化为注意力权重。这些权重决定了模型在生成输出时对不同位置的输入进行关注的程度。这种自注意力机制使得模型能够根据输入序列中的上下文信息灵活地调整输出的生成。

自注意力机制的引入是Transformer模型相对于传统递归神经网络(如循环神经网络)的一个重大突破。传统的递归神经网络在处理长序列时容易出现梯度消失或梯度爆炸问题,而自注意力机制使得Transformer模型能够更好地捕捉长距离依赖关系。

前馈神经网络(Feed-forward Neural Network)

前馈神经网络对每个位置的表示进行进一步的处理。前馈神经网络是由多个全连接层组成的,其中每个层都有一组参数,用于将输入进行非线性变换。这个过程可以帮助模型在生成输出时引入更多的复杂性和灵活性。

Transformers

高级大型语言模型采用了一种称为Transformer的特定架构。将Transformer层视为传统神经网络层之后的独立层。实际上,Transformer层通常作为附加层添加到传统神经网络架构中,以提高LLM在自然语言文本中建模长距离依赖性的能力。

Transformer层通过并行处理整个输入序列而不是顺序处理来工作。它由两个基本组件组成:自注意力机制和前馈神经网络。

img

添加图片注释,不超过 140 字(可选)

自注意力机制允许模型为序列中的每个单词分配一个权重,取决于它对预测的重要性。这使得模型能够捕捉单词之间的关系,而不考虑它们之间的距离。

img

添加图片注释,不超过 140 字(可选)

因此,在自注意力层完成序列处理后,位置逐个前馈层接受输入序列中的每个位置并独立处理它。对于每个位置,全连接层接收该位置上的标记(单词或子词)的向量表示。这个向量表示是前面的自注意力层的输出。这个上下文中的全连接层用于将输入向量表示转换为更适合模型学习单词之间复杂模式和关系的新向量表示。

在训练过程中,Transformer层的权重被重复更新,以减小预测输出与实际输出之间的差异。这是通过反向传播算法完成的,类似于传统神经网络层的训练过程。

文本生成

通常是由LLM模型执行的最后一步;在LLM经过训练和微调之后,该模型可以用于根据提示或问题生成高度复杂的文本。模型通常通过种子输入进行”预热”,种子输入可以是几个单词、一个句子,甚至是一个完整的段落。然后,LLM利用其学到的模式生成一个连贯且与上下文相关的回答。

文本生成依赖于一种称为自回归的技术,即模型根据它已生成的先前单词逐个生成输出序列的每个单词或标记。模型利用在训练期间学到的参数来计算下一个单词或标记的概率分布,然后选择最有可能的选择作为下一个输出。

img

添加图片注释,不超过 140 字(可选)

10、人类引导强化学习提升人工智能性能

大型语言模型领域最令人着迷的发展之一是引入了人类反馈的强化学习。这种前沿技术使得LLM能够通过人类的反馈进行学习和改进,使它们在各种应用中成为更加动态和强大的工具。

img

添加图片注释,不超过 140 字(可选)

一般而言,人类引导强化学习意味着由人提供给机器学习模型的一种持续反馈形式。这种反馈可以是明确的或隐含的。对于LLM来说,如果模型返回错误答案,人类用户可以纠正模型,从而提高模型的整体性能。

例如,如果LLM生成的文本在语法上或语义上不正确,人类可以向LLM提供反馈,指出生成的文本的哪些部分是正确的或不正确的。人类用户甚至可以解释或定义模型不理解的给定单词的含义。然后,LLM可以利用这个反馈调整其参数,并改进在生成更符合期望结果的文本方面的性能。

11、大型语言模型的例子

BERT

BERT是谷歌开发的一种预训练深度学习模型,全称为Transformer编码器表示的双向。它旨在理解和生成自然语言。

ERT利用双向Transformer架构,这意味着它可以正向和反向处理输入文本,以更好地理解单词之间的上下文和关系。

BERT在许多任务中被使用,如问答、情感分析、命名实体识别和文本分类。它在多个基准测试中取得了最先进的结果,包括斯坦福问答数据集(SQuAD)和GLUE(通用语言理解评估)基准。

作为比较措施,BERT base有1.1亿个参数,而更复杂的BERT large有3.45亿个参数。

GPT-4

OpenAI推出了GPT系列的最新创新:GPT-4,全称为生成式预训练Transformer 4。这个突破性的大型语言模型比其前身GPT-3的1750亿个参数更高,达到了惊人的1万亿个参数。

img

添加图片注释,不超过 140 字(可选)

GPT-4的关键优势与GPT-3类似,在大量文本数据上进行了广泛的预训练,使其能够学习极其多样的语言特征和关系。因此,可以使用相对较少的示例对GPT-4进行特定自然语言处理任务的微调,使其成为一种非常高效和多功能的工具,适用于各种应用。

要真正欣赏GPT-4的能力,可以考虑一下它比GPT-3强大500倍的事实,而GPT-3是OpenAI用来开发ChatGPT的语言模型。这种令人印象深刻的AI领域进步承诺带来更接近人类的准确回答,彻底改变我们与人工智能互动和受益的方式。

11、 大型语言模型的未来

关于大型语言模型的未来,最令人兴奋的是它们将不断变得更加善于理解和回应我们人类。很快,它们将变得非常高效,我们可以在几乎任何设备上使用它们,比如手机甚至小型设备。它们还将成为特定领域的专家,如医学或法律,这非常酷。

但这还不是全部。这些语言模型将能够处理不仅是文本,还包括图像和声音,并且将使用世界各地的语言。此外,人们正在努力确保这些AI模型是公平和负责任的,以使其更加开放和减少偏见。

总之,这些语言模型将成为我们惊人的伙伴,帮助我们完成各种任务,并以无数方式使我们的生活变得更轻松。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值