ChatGPT到底是什么?会给我们生活来这些改变↓

2022 年底,“ChatGPT”这个词悄然进入公众视野。

如果你没听说过,或是只把它当成一个聊天机器人,那就太小看它了。

很多行业,比如新闻、律师、教育、客服咨询等等,已经把 ChatGPT 应用在了生产、服务中。

那么,ChatGPT 究竟是什么?本期内容,我们就来了解 ChatGPT 和它背后的技术。

我们先从它的名字说起。

Chat,直译为“闲聊”,可以说 Chat GPT 是用起来如同微信或 QQ 的一个聊天应用。只不过,在那一头的不是你的朋友,而是一个 AI。

而 G、P、T 才是更重要的部分,它是“Generative Pre-trained Transformer”的缩写。

Generative 意思是“生成式的”,这意味着它能够根据接收到的信息,生成文本做出回应。

Pre-trained 指“预训练的”,是说在跟你对话之前,Chat GPT 就已经经过了大量的文本训练。

Transformer 是一种深度学习的模型。可以说,transformer 是整个 GPT 的核心。

要想理解“ChatGPT”,我们就要从 AI 是如何学说话这件事情说起。

人类说话,是从脑海中的“词典”里挑出一些词,组成句子。如果只是简单地让 AI 从词典里随机取词,组成的句子大概率是不通顺的,没有任何含义。

为了让计算机能够说出人类的语言,人们引入了马尔科夫模型。简单的说,马尔科夫模型能把一个词和前面的几个词建立起联系。

举个例子,根据语料库,“苏打”的下一个词是“饼干”或“汽水”的概率远比“桌子”或“胡萝卜”之类的词要高。假如继续在“苏打”前面添加一个“吃”字,那么,填“饼干”的可能性又比“汽水”的概率要高。通过这种方式生成的句子,就比随机生成的语句,更接近人类语言。

基于这样的思考,在 20 世纪 70、80 年代,一种叫做循环神经网络的模型诞生了。循环神经网络简称 RNN,它能够很好地考虑词语的顺序性以及前面词语对后面词语的影响。

但 RNN 也有一些局限性,比如它存在“梯度消失”效应。随着句子长度增长,说着说着,它就忘记前面说了什么了。

于是,人们对 RNN 模型进行了优化,开发出了长短期记忆模型,简称 LSTM,以解决“健忘”的问题。

但这还不够。基于 RNN 的模型有两个问题,一是学习速度太慢。二是对于词义的理解不够好。

为此,新的神经网络架构 transformer 出现了。基于 transformer 的模型有着非常快的学习速率,能够在短时间里学习大量的文本资料。

目前,跟人们对话的 GPT 模型经过了至少 45TB 的文本资料训练。

并且 transformer 中引入了一种叫做“self attention”的技术。这让它能够根据文章中的其他词汇,辅助理解词义,更好地听懂我们所说的话。

当然了,GPT 还在不断优化中。比如 GPT-4.0 就具备了更强的逻辑推理能力,甚至能理解图片上的内容,前景不可估量。

其实,像 GPT 这样参数极其复杂、需要经过大量文本训练的语言模型,被称作大语言模型。除了 GPT,比如阿里的 PLUG,华为的盘古-α、百度的 ERNIE 3.0 等等,都属于大语言模型。

在这些大语言模型的帮助下,我们的工作、生活方式,可能发生巨大的改变。

你,准备好了吗?

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值