Fastapi 是一个Python Web 框架,可以快速把我们写的函数、服务构建成 API,并自动生成交互式文档。
MCP 是一个能让 AI 使用工具的协议。
而 Fastapi-MCP,则是能借助 Fastapi 的特性快速把我们写的函数代码部署成 MCP 供 AI 调用。
非常适合个人快速开发 MCP 服务,或者企业内部 DIY AI Agent 场景,特别是已经有FastAPI 服务的,可以一键让 AI 调用
大家在跟 AI 对话的时候,有需要让 AI搜索图片的场景吗?
例如自媒体写公众号,需要找图来插入,问 AI 就只会让我自己去搜。
加上最近在做项目,需要用 AI 写文章然后批量发布到多个渠道。
大家也知道,为了提高文章完读率,内容最好是能图文并茂,也就是说要加入一些图片进去。
正好我选的赛道不适合用 AI 生图,加上我是矩阵操作,AI生图不确定太高了。
于是我打算通过搜索图片来解决。虽然方式很传统但稳定性高,不会像 AI 生图有可能会翻车。
目前很多搜索接口,例如 EXA也能把图片搜出来,但如果想在实际业务中落地,还是需要有一些 DIY 的需求,所以我准备自己做一个谷歌图片搜索的接口,然后打包成 MCP Server,这样就能直接在 AI 对话中帮我解决图片搜索的问题。
同时,这也是一个如何从 0 开始构建一个 MCP Server 的教程。
第一步,先跑通代码。
这个很好理解,一个最简单的 MCP Server,例如是我们自己写的函数——计算器
def calculator(a,b):
return a+b
#测试示例
result = calculate(5,3)
print(result)
-------
8
我们要做的事跟这个一样,传入参数-返回谷歌搜索的图片:
def get_google_images(keyword):
images = google_search(keyword)
return images
首先,我们需要有谷歌的搜索服务接口。
3 小步:
1. 在谷歌创建项目 project
有两种方式:
方式1,到谷歌云的后台创建
方式 2【推荐】,直接新建一个 Gemini 的 api key,会自动创建 Project,一举两得
2.获取谷歌搜索的 api key
如下图,点获取密钥
此时就会需要我们选择项目,选择第一步中创建好的即可。
3.获取谷歌搜索引擎的 id,也是 cx
如下图填写即可。
点「创建」就能看到下图代码中 cx= … 后面的这串就是cx 了
接下来,我们可以让 DeepSeek 帮我们写以下代码:
import requests
def get_google_images(keyword, api_key, cx, num=5):
base_url = "https://www.googleapis.com/customsearch/v1"
params = {
'q': keyword,
'key': api_key,
'cx': cx,
'searchType': 'image',
'num': num
}
try:
response = requests.get(base_url, params=params)
response.raise_for_status()
data = response.json()
images = []
if 'items' in data:
for item in data['items']:
images.append({
'title': item.get('title', ''),
'link': item.get('link', ''),
'thumbnail': item.get('image', {}).get('thumbnailLink', '')
})
return images
except Exception as e:
print(f"Error fetching images: {e}")
return []
# 使用示例
get_google_images("小猫", api_key, cx, num=3)
谷歌搜索返回的结果长这样:
{"total":3,"images":[{"url":"https://pic.pngsucai.com/01/07/46/1a7108683d0f0d32.webp","title":"卡通小猫萌宠logoPNG图片素材下载_图片编号10746394-PNG素材网","width":575,"height":800,"thumbnail":"https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTrIq5zdcP52rjAYWyLIbh_BpIJh2RfXtrJlRb6RH5pUffYNV1-3OO8LQ&s","area":460000},...
]}
里面的链接都是直接可用的图片地址
第二步,把这个代码封装成 Fastapi 接口
先安装 Fastapi
pip install uvicorn, fastapi
然后同样可以让 Deepseek 帮我们把之前的代码,改成 Fastapi:
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
import requests
from pydantic import BaseModel
import uvicorn
app = FastAPI()
classSearchRequest(BaseModel):
keyword: str
num: int = 5# 默认返回5张图片
@app.post("/search")
asyncdefsearch_images(request: SearchRequest):
api_key = "YOUR_API_KEY"
cx = "YOUR_CX"
base_url = "https://www.googleapis.com/customsearch/v1"
params = {
'q': request.keyword,
'key': api_key,
'cx': cx,
'searchType': 'image',
'num': request.num
}
response = requests.get(base_url, params=params)
response.raise_for_status()
data = response.json()
images = []
if'items'in data:
for item in data['items']:
images.append({
'title': item.get('title', ''),
'link': item.get('link', ''),
'thumbnail': item.get('image', {}).get('thumbnailLink', '')
})
return JSONResponse(content={"images": images})
defmain():
uvicorn.run(app, host="0.0.0.0", port=9797)
if __name__ == "__main__":
main()
运行python main.py
在浏览器打开端口后添加 /docs 的地址,就是接口的文档
见到如下图这样的,就正常 fastapi 部署好了
我们的客户端,或者说其他电脑都可以通过以下代码来调用我们的 api:
import requests
api_url = http://你服务器地址:9797/search
response = requests.post(
api_url,
json={"keyword": keyword, "num": num})
返回结果:
{
"images": [
{
"title": "卡通小猫萌宠logoPNG图片素材下载_图片编号10746394-PNG素材网",
"link": "https://pic.pngsucai.com/01/07/46/1a7108683d0f0d32.webp",
"thumbnail": "https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcTrIq5zdcP52rjAYWyLIbh_BpIJh2RfXtrJlRb6RH5pUffYNV1-3OO8LQ&s"
},
...
]
}
第三步,用 Fastapi-MCP 改造服务端
先安装
pip install fastapi-mcp
这步也非常简单,只需要在上述 fastapi 代码的基础上添加:
# 新增导入
from fastapi_mcp import FastApiMCP
# 新增:挂载 MCP 服务器
mcp = FastApiMCP(
app,
name="Google Images Search MCP",
base_url="http://localhost:9797",
description="Google图片搜索API"
)
# 新增:挂载MCP服务器(放在所有路由定义之后)
mcp.mount()
运行后可以通过http://你服务器地址:9797/mcp来访问 MCP
注意,以上说的服务器地址,如果是在本地跑的话 就是 localhost
第四步,在 AI 软件中使用 MCP
在 Cursor 可以直接用 url,配置以下 MCP Server
{
"mcpServers": {
"Google Images Search": {
"url": "http://127.0.0.1:9797/mcp"
}
}
}
我们就能看到服务启动了,最重要是「Tools」里要有对应的工具才能使用。
第五步,直接在对话中使用
我直接让 AI搜索马斯克的照片,就能看到它正确调用我们的工具了。
彩蛋:后续想添加自定义工具可以直接在 main.py 里加就可以了
例如:
import datetime
# 新增简单工具:获取当前时间
class TimeRequest(BaseModel):
format: str = "human" # 可选: iso | timestamp | human
@app.get("/tools/current_time", operation_id="get_current_time")
async def get_current_time(request: TimeRequest):
return {"current_time": datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
至此,我们就学会了怎么用Fastpi-MCP的工具来实现自己的 MCP服务。
建议一定要到官网学习:https://github.com/tadata-org/fastapi_mcp
因篇幅限制,本次教程的示例代码以下方式获得!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。