今天主要来聊一聊Ai大模型中的几个概念
这两年AI应用开发火得不行,但很多小伙伴被一堆专业名词绕晕了。今天咱们就来掰开揉碎说说几个最关键的术语,保证看完你就能和工程师聊上两句了。
一、AI里的"打工人"——智能体
想象有个24小时待命的虚拟员工,这就是智能体(Agent)。它和传统AI最大的区别就像人类和机器的区别:传统AI只能按固定剧本走,而智能体更像真人,能自己观察环境、思考对策、调用工具完成任务。
现在很多企业都在搞的智能体平台,本质上就是给这些"虚拟员工"配办公室。平台要解决的核心问题就是:怎么让这些智能体记性好(长期记忆+短期记忆)、会做计划(任务分解)、能调用各种工具(比如查数据库、调API),这样才能适应各种复杂场景。
二、AI的大脑——大语言模型(LLM)
LLM就是大家常说的"大模型",比如ChatGPT。它的核心能力就两点:理解人话和说人话。训练过程分两个阶段:
-
预训练:相当于让AI上完九年义务教育,通过海量文本学习基础语言规律
-
微调:类似专业培训,针对具体任务(比如客服、翻译)进行专项训练
现在很多AI应用开发,其实就是通过API调取这些大模型的"脑力"。不过要注意,这些模型动辄几十亿参数(比如通义千问有70亿参数),就像个超级学霸,但需要大量算力资源供着。
三、给AI配个资料库——RAG技术
大模型有个致命弱点:遇到训练数据里没有的知识就容易胡说八道(业内叫"幻觉")。这就好比让学霸参加没复习过的考试,只能瞎蒙。
RAG技术相当于给AI配了个随身资料库。具体操作分两步:
- 建索引:把企业私有的知识文档(比如产品手册)整理成可检索的数据库
- 查资料:每次回答问题前先查资料库,把相关资料喂给大模型当参考
这招不仅减少AI瞎编的概率,还能像写论文一样给出引用来源。对企业来说,最大的好处是可以随时更新知识库,不用每次都重新训练大模型。
四、和AI沟通的艺术——提示词工程
想要让大模型好好干活,关键要会说"提示词"。这就像和学霸同事沟通:
-
别问"这个怎么做?"(太笼统)
-
要问"用Python写个爬虫,抓取某网站商品价格,存成CSV格式,给出代码示例"
好的提示词应该包含:
-
明确指令(做什么)
-
具体对象(对什么做)
-
示例参考(最好有样版)
-
格式要求(要写成什么样)
-
异常处理(遇到问题怎么办)
举个真实案例:某旅游App用提示词优化后,生成的行程规划从"建议参观景点"变成"推荐3个故宫周边人均100元以下的京菜馆,附地址和推荐菜"——这才是用户真正需要的。
现代AI应用开发就像组建一个虚拟团队:LLM是大脑,RAG是资料库,智能体是执行者,而提示词就是管理这个团队的沟通技巧。把这些组件玩转了,才能做出真正有用的AI应用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。