LangChain 就像是一个乐高积木管理员,可以帮你把各种 AI 能力组装成强大的应用程序。
一、基本概念
1、 核心组件
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
# 初始化语言模型
llm = OpenAI(temperature=0.7)
# 创建提示模板
prompt = PromptTemplate(
input_variables=["product"],
template="写一个关于{product}的广告词,不超过50字。"
)
# 构建简单链
chain = LLMChain(llm=llm, prompt=prompt)
# 运行链
result = chain.run("智能音箱")
print(result)
2、 内存机制
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationChain
# 创建对话记忆
memory = ConversationBufferMemory()
# 构建带记忆的对话链
conversation = ConversationChain(
llm=llm,
memory=memory,
verbose=True
)
# 第一轮对话
response = conversation.predict(input="你好,我想了解AI应用开发")
print(response)
# 第二轮对话 (会记住上下文)
response = conversation.predict(input="有哪些框架可以使用?")
print(response)
二、实用功能
1、 文档加载解析
# 从各种来源加载文档
from langchain.document_loaders import PyPDFLoader, CSVLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
# 加载PDF文档
loader = PyPDFLoader("我的报告.pdf")
documents = loader.load()
# 文本分割
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=100
)
chunks = text_splitter.split_documents(documents)
print(f"文档被分成了{len(chunks)}个片段")
2、向量存储检索
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
# 创建嵌入模型
embeddings = OpenAIEmbeddings()
# 构建向量存储
vectorstore = Chroma.from_documents(
documents=chunks,
embedding=embeddings,
persist_directory="./data/chroma_db"
)
# 相似性搜索
query = "公司2023年的营收是多少?"
docs = vectorstore.similarity_search(query, k=3)
print(f"找到了{len(docs)}个相关文档片段")
3、 智能代理构建
from langchain.agents import initialize_agent, Tool
from langchain.tools import BaseTool
# 定义工具
tools = [
Tool(
name="搜索引擎",
func=lambda q: "搜索结果: " + q,
description="当你需要搜索网络信息时使用"
),
Tool(
name="计算器",
func=lambda q: eval(q),
description="进行数学计算时使用"
)
]
# 初始化代理
agent = initialize_agent(
tools=tools,
llm=llm,
agent="zero-shot-react-description",
verbose=True
)
# 运行代理
agent.run("计算45乘以32,然后搜索这个结果的平方根")
三、常见任务示例
1、 构建文档问答
from langchain.chains import RetrievalQA
# 构建检索式问答链
retrieval_qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff", # 传统方式,适合短文档
retriever=vectorstore.as_retriever(),
verbose=True,
return_source_documents=True # 返回源文档
)
# 执行问答
response = retrieval_qa({"query": "公司的未来发展规划是什么?"})
print(response["result"])
print("参考文档:", response["source_documents"][0].page_content[:100])
2、构建对话机器人
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferWindowMemory
# 创建有限窗口记忆 (只记住最近几轮对话)
chat_memory = ConversationBufferWindowMemory(
k=3, # 记住最近3轮
memory_key="chat_history",
return_messages=True
)
# 构建对话检索链
chat_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=chat_memory,
verbose=True
)
# 开始对话
while True:
query = input("请输入问题(输入'退出'结束): ")
if query.lower() == "退出":
break
response = chat_chain({"question": query})
print("回答:", response["answer"])
注意事项
- API 密钥要妥善保管,别硬编码在代码里。
- 文档分块要合理,太大或太小都不行。
- 代理可能会无限循环思考,设置最大步数限制。
- 提示语设计很关键,直接决定输出质量。
- 本地测试后再上生产,别费钱又出问题。
总结
LangChain 是构建AI应用的瑞士军刀,可以帮你:
- 管理模型调用
- 处理上下文记忆
- 连接外部数据源
- 构建智能代理系统
玩转 LangChain,从"我想做个AI应用"到"看我做出来了"只差这篇文章的距离。来试试?说不定下个爆款AI应用就是你做的!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。