Open WebUI 是一款专为大模型设计的开源可视化交互工具,它通过类 ChatGPT 的直观界面,让用户无需代码即可管理、调试和调用本地或云端的大语言模型(LLMs)。
Open WebUI 通过可视化交互与大模型技术结合,成为私有化部署的标杆工具。其开箱即用的特性适合开发者快速验证模型、企业构建合规 AI 平台及个人用户探索 AI 应用。随着插件生态的扩展(如视频生成、语音交互),未来可进一步降低多模态应用的开发门槛。
一、Open WebUI
什么是Open WebUI?Open WebUI 是一个开源的、可扩展且用户友好的自托管 AI 平台,专为生成式人工智能模型交互而设计。
Open WebUI旨在为用户提供一个简单易用、功能强大且高度定制化的界面,使其能够轻松与各种 AI 模型(如文本生成、图像生成、语音识别等)进行交互。
- 直观交互体验:提供类似 ChatGPT 的自然语言对话界面,支持Markdown 格式渲染(如加粗、列表、代码块等)和代码高亮显示,提升内容可读性。
- 多轮对话管理:内置对话历史记录功能,用户可随时回顾上下文,避免重复输入,确保对话连贯性。
- 全平台兼容性: 采用响应式设计,无论是桌面端还是移动端,界面均能自适应屏幕尺寸,提供一致的使用体验。
- 低门槛操作: 通过简化交互流程和优化视觉设计,大幅降低非技术用户的使用难度,真正实现“零学习成本”上手。
Open WebUI + vLLM如何实现DeepSeek本地部署并可视化?在本地部署 DeepSeek 模型并结合 Open WebUI 和 vLLM 实现可视化,可通过以下步骤完成。
1. 下载 DeepSeek 模型
从 HuggingFace 下载模型文件
git lfs install
git clone https://huggingface.co/deepseek-ai/DeepSeek-7B
2. 安装 vLLM
使用 vLLM 加速推理
pip install "vllm>=0.4.2" --extra-index-url https://download.pytorch.org/whl/cu118
3. 安装 Open WebUI
通过 Docker 快速部署
docker pull ghcr.io/open-webui/open-webui:main
4. 启动 vLLM 服务
加载 DeepSeek 模型并启动 API 服务
python -m vllm.entrypoints.openai.api_server \
--model /path/to/DeepSeek-7B-Chat \
--trust-remote-code \
--tensor-parallel-size 1 \
--max-model-len 4096 \
--port 8000
5. 启动 Open WebUI
配置 Docker 容器并连接 vLLM
docker run -d \
-p 3000:8080 \
-e OLLAMA_API_BASE_URL=http://host.docker.internal:8000/v1 \
-e WEBUI_SECRET_KEY=your_secret_key \
-v open-webui:/app/backend/data \
--name open-webui \
ghcr.io/open-webui/open-webui:main
二、OpenAI API
OpenAI API 如何接入大语言模型?OpenAI API是 OpenAI 提供的一组编程接口,允许开发者通过代码调用其先进的大语言模型。
# Please install OpenAI SDK first: `pip3 install openai`
from openai import OpenAI
client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")
response = client.chat.completions.create(
model="deepseek-chat",
messages=[
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": "Hello"},
],
stream=False
)
print(response.choices[0].message.content)
Open WebUI 如何接入大语言模型?Open WebUI 支持通过 OpenAI API 兼容接口 接入多种大语言模型(LLM)。
- 本地部署的模型(如 vLLM、Transformers 运行的模型)
- 云端 API 服务(如 OpenAI GPT-4、DeepSeek API、Anthropic Claude 等)
1、 接入本地部署的模型
vLLM 提供高性能推理,并兼容 OpenAI API 格式。
pip install vllmvllm
serve deepseek-r1 --port 8000
2. 通过 Transformers 部署
适用于 Hugging Face 模型(需自行封装 API),启动服务后,在 Open WebUI 填写对应的 API 地址即可。
from transformers import AutoModelForCausalLM, AutoTokenizer
from fastapi import FastAPI
app = FastAPI()
model = AutoModelForCausalLM.from_pretrained("deepseek-r1")
tokenizer = AutoTokenizer.from_pretrained("deepseek-r1")
@app.post("/v1/chat/completions")
async def generate(request: dict):
response = model.generate(**request)
return {"choices": [{"message": {"content": response}}]}
3. 在 Open WebUI 中配置
进入 设置 > 模型,填写 API 地址:http://localhost:8000/v1,选择模型名称(如 deepseek-r1)
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。