基于 KV Cache 实现流式 Self-Attention 序列解码

引言

自注意力机制(Self-Attention)作为Transformer模型的核心,极大地提升了自然语言处理、图像处理等领域的性能。然而,传统的自注意力机制在处理长序列时存在计算复杂度高、内存消耗大的问题。为了应对这一挑战,流式自注意力(Streaming Self-Attention)应运而生,通过KV缓存(Key-Value Cache)实现高效的序列解码。

本文将详细解析基于KV缓存的流式Self-Attention代码,并通过示例展示其工作机制和效果。
在这里插入图片描述

代码解析

导入依赖

首先,我们导入必要的PyTorch模块:

import torch
import torch.nn as nn
import math

定义流式Self-Attention类

接下来,我们定义一个流式Self-Attention的类StreamSelfAttention。该类继承自nn.Module,并实现了流式Self-Attention机制:

class StreamSelfAttention(nn.Module):
    def __init__(self, model_dim, attention_size):
        super(StreamSelfAttention, self).__init__()
        self.model_dim = model_dim
        self.attention_size = attention_size
        self.query_proj = nn.Linear(model_dim, model_dim)
        self.key_proj = nn.Linear(model_dim, model_dim)
        self.value_proj = nn.Linear(model_dim, model_dim)
        self.softmax = nn.Softmax(dim=-1)
        
        self.k_cache = None
        self.v_cache = None

在构造函数中,我们初始化了模型维度(model_dim)和注意力窗口大小(attention_size),并定义了投影层用于生成查询(Q)、键(K)、值(V)向量。我们还定义了用于存储KV缓存的成员变量k_cachev_cache

前向传播

forward方法中,我们实现了流式Self-Attention的前向传播过程:

def forward(self, x, past_k=None, past_v=None):
    # Project inputs to Q, K, V
    q = self.query_proj(x)  # (N, T, model_dim)
    k = self.key_proj(x)  # (N, T, model_dim)
    v = self.value_proj(x)  # (N, T, model_dim)
    
    batch_size = x.size(0)
    seq_len = x.size(1)
    
    # Initialize past_k and past_v if not provided
    if past_k is None:
        past_k = torch.zeros((batch_size, 0, self.model_dim), device=x.device)
        past_v = torch.zeros((batch_size, 0, self.model_dim), device=x.device)
    
    # Concatenate past K, V with current K, V
    k = torch.cat([past_k, k], dim=1)  # (N, seq_len + T, model_dim)
    v = torch.cat([past_v, v], dim=1)  # (N, seq_len + T, model_dim)
    
    # Trim cache to the attention size
    if k.size(1) > self.attention_size:
        k = k[:, -self.attention_size:]  # (N, attention_size, model_dim)
        v = v[:, -self.attention_size:]  # (N, attention_size, model_dim)

    # Compute attention scores
    attn_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.model_dim)  # (N, T, attention_size)
    attn_weights = self.softmax(attn_scores)  # (N, T, attention_size)
    
    # Compute attention output
    attn_output = torch.matmul(attn_weights, v)  # (N, T, model_dim)
    
    # Update caches
    self.k_cache = k
    self.v_cache = v
    
    return attn_output, self.k_cache, self.v_cache

代码详细解析

  1. 投影输入到查询、键、值向量

    q = self.query_proj(x)  # (N, T, model_dim)
    k = self.key_proj(x)  # (N, T, model_dim)
    v = self.value_proj(x)  # (N, T, model_dim)
    

    这里,我们将输入x通过线性层分别投影到查询、键和值向量。这些向量用于后续的注意力计算。

  2. 初始化缓存

    if past_k is None:
        past_k = torch.zeros((batch_size, 0, self.model_dim), device=x.device)
        past_v = torch.zeros((batch_size, 0, self.model_dim), device=x.device)
    

    如果没有提供过去的键和值缓存,我们初始化为空的张量。

  3. 拼接缓存和当前的键、值向量

    k = torch.cat([past_k, k], dim=1)  # (N, seq_len + T, model_dim)
    v = torch.cat([past_v, v], dim=1)  # (N, seq_len + T, model_dim)
    

    我们将过去的键和值向量与当前的键和值向量拼接,以便在注意力计算中使用。

  4. 裁剪缓存

    if k.size(1) > self.attention_size:
        k = k[:, -self.attention_size:]  # (N, attention_size, model_dim)
        v = v[:, -self.attention_size:]  # (N, attention_size, model_dim)
    

    为了限制计算复杂度,我们将缓存裁剪到指定的注意力窗口大小。

  5. 计算注意力分数和权重

    attn_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.model_dim)  # (N, T, attention_size)
    attn_weights = self.softmax(attn_scores)  # (N, T, attention_size)
    

    我们通过查询向量和键向量计算注意力分数,并通过Softmax函数得到注意力权重。

  6. 计算注意力输出

    attn_output = torch.matmul(attn_weights, v)  # (N, T, model_dim)
    

    最后,我们通过注意力权重和值向量计算注意力输出。

  7. 更新缓存

    self.k_cache = k
    self.v_cache = v
    

示例

为了更好地理解该机制的工作方式,我们通过一个示例来展示其效果:

if __name__ == "__main__":
    batch_size = 2
    model_dim = 64
    attention_size = 10
    seq_len = 1

    # Instantiate the self-attention layer
    self_attn = StreamSelfAttention(model_dim, attention_size)
    
    past_k = past_v = None
    for t in range(5):
        x = torch.rand(batch_size, seq_len, model_dim)  # Simulating input at time step t
        output, past_k, past_v = self_attn(x, past_k, past_v)
        print(f"Output shape at time step {t}: {output.shape}")  # (N, T, model_dim)
        print(f"past_k shape: {past_k.shape}")  # (N, seq_len + T, model_dim)
        print(f"past_v shape: {past_v.shape}")  # (N, seq_len + T, model_dim)

在这个示例中,我们创建了一个流式Self-Attention层,并在5个时间步内进行前向传播。每个时间步,我们生成随机输入,并通过Self-Attention层计算输出,同时更新键和值缓存。

输出示例

Output shape at time step 0: torch.Size([2, 1, 64])
past_k shape: torch.Size([2, 1, 64])
past_v shape: torch.Size([2, 1, 64])
Output shape at time step 1: torch.Size([2, 1, 64])
past_k shape: torch.Size([2, 2, 64])
past_v shape: torch.Size([2, 2, 64])
Output shape at time step 2: torch.Size([2, 1, 64])
past_k shape: torch.Size([2, 3, 64])
past_v shape: torch.Size([2, 3, 64])
Output shape at time step 3: torch.Size([2, 1, 64])
past_k shape: torch.Size([2, 4, 64])
past_v shape: torch.Size([2, 4, 64])
Output shape at time step 4: torch.Size([2, 1, 64])
past_k shape: torch.Size([2, 5, 64])
past_v shape: torch.Size([2, 5, 64])

可以看到,随着时间步的增加,键和值缓存逐渐积累,并在注意力计算中使用。

结论

本文详细介绍了基于KV缓存的流式Self-Attention机制,通过具体代码解析和示例演示

,展示了其在高效处理长序列方面的优势。流式Self-Attention在实际应用中,能够有效减少计算复杂度和内存消耗,对于实时序列解码等任务具有重要意义。

希望本文能帮助读者更好地理解和实现流式Self-Attention机制,并在实际项目中加以应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pika在线

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值