神经网络模型
我理解的神经网络模型类似人的记忆,即人从出生到长大,接触、吸收外部信息并且将外部事物量化、统一化、概念化的过程,以此去指导一生的行为。
实际上,神经网络模型ANN是由大量的简单基本元件组成,每个元件的结构和功能都比较简单,但是众多的神经元组合所产生的系统却非常复杂。神经网络模型属于一种较为智能的判别过程,对于变量类型并没有过多要求,可以有效地识别事物的不同特征以及模式,例如不完全的信息、复杂的非线性特征等等。
通常,工作中使用的神经网络模型为弱能的神经网络,其智能程度犹如青蛙、老鼠的智力。目前,较为深层的神经网络模型已经开发了出来,例如谷歌的阿尔法狗便是深层的神经网络,其背后的算法支撑即为贝叶斯算法。
其实,并不需要过多的了解、关注神经网络模型背后的底层结构,工作中