神经网络如同青蛙的智力

本文探讨神经网络模型的原理和应用,将其比喻为青蛙的智力,解释其弱智能特性。作者指出,尽管神经网络是黑箱模型,但在预测问题上表现出色,但也限制了对变量关系的理解。在数据挖掘中,速度往往比精度更重要,文章分享了提高模型预测速度的策略,并提到了神经网络建模过程中的注意事项和常见问题。
摘要由CSDN通过智能技术生成

                                                                                     神经网络模型

       我理解的神经网络模型类似人的记忆,即人从出生到长大,接触、吸收外部信息并且将外部事物量化、统一化、概念化的过程,以此去指导一生的行为。

       实际上,神经网络模型ANN是由大量的简单基本元件组成,每个元件的结构和功能都比较简单,但是众多的神经元组合所产生的系统却非常复杂。神经网络模型属于一种较为智能的判别过程,对于变量类型并没有过多要求,可以有效地识别事物的不同特征以及模式,例如不完全的信息、复杂的非线性特征等等。

       通常,工作中使用的神经网络模型为弱能的神经网络,其智能程度犹如青蛙、老鼠的智力。目前,较为深层的神经网络模型已经开发了出来,例如谷歌的阿尔法狗便是深层的神经网络,其背后的算法支撑即为贝叶斯算法

        其实,并不需要过多的了解、关注神经网络模型背后的底层结构,工作中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值