tensorflow学习笔记(3)——基础(三)——TF训练和变量

本文介绍了使用TensorFlow实现神经网络的基础,包括TF游乐场简介、前向传播算法、神经网络参数(TF变量)的创建和管理,以及如何使用TF训练神经网络模型,强调了变量初始化、反向传播算法和损失函数在训练过程中的作用。
摘要由CSDN通过智能技术生成

5 tensorflow实现神经网络

1 TF游乐场及神经网络简介

(TF游乐场,http://playground.tensorflow.org,略)
使用神经网络解决分类问题的主要步骤:
1. 提取特征向量作为输入
2. 定义神经网络结构,得到输出
3. 通过训练数据调整参数取值,这是训练神经网络的过程
4. 使用神经网络进行预测

2 前向传播算法简介

神经网络的结构就是不同神经元之间的连接结构。
全连接的神经网络是指相邻两层之间的任意两个节点之间都有连接。和卷积层、LSTM结构不同。
前向传播结果需要三部分信息:输入,连接结构和输出。
实现前向传播过程的TF程序:

a = tf.matmul(x, w1)
y = tf.matmul(a, w2)

tf.matmul实现了矩阵乘法的功能。

3 神经网络参数与TF变量

TF中,变量(tf.Variable)的作用是保存和更新神经网络中的参数,需要指定初始值,一般是使用随机初始值。
在TF中声明一个2×3矩阵的方法

weights = tf.variable(tf.random_normal([2,3], stddev=2))

上面的代码生成一个2×3矩阵,矩阵中元素是均值为0,标准差为2的随机数,tf.random_normal函数可以通过参数mean来指定均值,没指定时默认为0。

TF随机数生成函数

函数名称 随机数分布 主要参数
tf.random_nomal 正态分布 均值、标准差、取值类型
tf.truncated_normal 正态分布,但如果随机出来的值偏离平均值超过2个标准差,那么这个数将会被重新随机
cda备考学习学习笔记——基础知识篇(二)主要涉及了计算机科学与技术领域的基本概念和知识。 首先,它介绍了计算机网络的基础知识。网络是将多台计算机通过通信链路连接起来,使它们能够相互通信和共享资源的系统。笔记中详细介绍了网络的组成、拓扑结构和通信协议等重要内容。 其次,笔记还解释了计算机系统的基本组成。计算机系统由硬件和软件两部分组成,其中硬件包括中央处理器、存储器、输入输出设备等,而软件则分为系统软件和应用软件。笔记详细介绍了各种硬件和软件的功能和作用。 此外,笔记还对数据库管理系统进行了介绍。数据库管理系统是一种用于管理和组织数据的软件系统,它能够实现数据的存储、检索和更新等操作。笔记中详细介绍了数据库的概念、结构和操作等内容。 最后,笔记还包括了算法和数据结构的基础知识。算法是解决问题的一系列步骤和规则,而数据结构则是组织和存储数据的方式。笔记中介绍了常用的算法和数据结构,如排序算法、树和图等。 总之,通过学习CDA备考学习笔记中的基础知识篇(二),我们能够更好地理解计算机网络、计算机系统、数据库管理系统以及算法和数据结构等相关概念和知识。这些基础知识对于我们深入研究计算机科学与技术领域是非常重要的,也为我们日后的学习和工作奠定了坚实的基础
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值