TensorFlow学习笔记(5)——训练全连接神经网络

本文介绍了使用TensorFlow构建并训练全连接神经网络来解决经典的MNIST手写数字识别问题,详细讲解了模型中滑动平均的应用。
摘要由CSDN通过智能技术生成

全连接神经网络解决MNIST问题

这里的模型是使用滑动平均的模型
代码和我的注释:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
'''
mnist = input_data.read_data_sets("path/to/MNIST_data", one_hot=True)
print(mnist.train.num_examples)
print(mnist.validation.num_examples)
print(mnist.test.num_examples)
print(mnist.train.images[0])
print(mnist.train.labels[0])
'''

#MNIST数据集相关常数
INPUT_NODE=784
OUTPUT_NODE=10

#配置神经网络参数
LAYER1_NODE=500
BATCH_SIZE=100

LEARNING_RATE_BASE=0.8
LEARNING_RATE_DECAY=0.99
REGULARIZATION_RATE=0.0001
TRAINING_STEPS=30000
MOVING_AVERAGE_DECAY=0.99

#一个辅助函数,给定神经网络的输入和所有参数,计算神经网络的前向传播结果。定义了一个ReLU激活函数的三层全连接神经网络。
def inference(input_tensor, avg_class, weight
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值