全连接神经网络解决MNIST问题
这里的模型是使用滑动平均的模型
代码和我的注释:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
'''
mnist = input_data.read_data_sets("path/to/MNIST_data", one_hot=True)
print(mnist.train.num_examples)
print(mnist.validation.num_examples)
print(mnist.test.num_examples)
print(mnist.train.images[0])
print(mnist.train.labels[0])
'''
#MNIST数据集相关常数
INPUT_NODE=784
OUTPUT_NODE=10
#配置神经网络参数
LAYER1_NODE=500
BATCH_SIZE=100
LEARNING_RATE_BASE=0.8
LEARNING_RATE_DECAY=0.99
REGULARIZATION_RATE=0.0001
TRAINING_STEPS=30000
MOVING_AVERAGE_DECAY=0.99
#一个辅助函数,给定神经网络的输入和所有参数,计算神经网络的前向传播结果。定义了一个ReLU激活函数的三层全连接神经网络。
def inference(input_tensor, avg_class, weight