从A年到B年,某数据增长率为R1,从B年到C年,该数据增长率为R2,那么从A年到C年,该数据增长率R为R1 + R2 + R1*R2
公式推导:
设A年该数据总量为x,则B年时该数据为x * (1+R1)
C年时该数据为 x * (1+R1)(1+R2)
将从A到C增长率为R代入式中
x * (1+R) = x * (1+R1)(1+R2)
等式两边均为C年时该数据的总量,可消去一个x,拆开后得:
1 + R = 1+ R1 + R2 + R1*R2
故 R = R1 + R2 + R1*R2
此为公式推导后得出的结果。
如若想对该结果加以理解,可以通过将总量分成不同份来理解,方便记忆。
因为 R 为 A 年 到 C 年 的增长率
即 x * R 所得应为 A 到 C 年的总增长量,也就是A 年 到 B 年, B 年 到 C 年的总增长量。
我们可以将每年的总量看作初始值加一个增长值
x则为初始值,其为A年的总量,x * R1则为A年到B年的初始值的增长量,
x * R2 则为B年到C年的初始值的增长量,然而A年到B年之后,x*R1这部分增长值,也在B年到C年之间增长了,因此x*R1*R2 则是A年到B年间增长值在B年到C年间的增长量。
如若觉得还是晦涩难以理解,则可以结合资金来运算。
若你投资某产品100元,每年利润率是百分之1,假设产生利润都会再投入产品继续投资。
A年时初始资产就是100元,到了B年则变成 101元,增长了1元。
C年时的利润则应为 101 元 * 1%,也就是去年增长的1元也要涨百分之1。
若讲解有误或没有理解的地方,欢迎评论区讨论。