芝诺悖论的计算

没什么复杂的,学了高数应该都懂,只是稍微写写,算是复健一下。

背景

芝诺悖论简单表述就是,假设A 和B 之间路程为1,一个人先走了 1 2 \frac{1}{2} 21,然后又走了剩余路程的 1 2 \frac{1}{2} 21,就这么无穷匮也,那这人到底能不能走到那边。

中学的计算

第一步走了二分之一,第二步走了二分之一的二分之一,以此类推,把每一步走的路程加起来就是这个人一共走过的路程,即:
L = 1 2 + 1 4 + 1 8 + 1 16 + ⋯ L = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots L=21+41+81+161+
很明显这是个等比数列,首项 a 1 = 1 2 a_1 = \frac{1}{2} a1=21,公比 r = 1 2 r = \frac{1}{2} r=21,通项公式 a n = ( 1 2 ) n a_n = (\frac{1}{2})^n an=(21)n。前n 项和为:
S n = a 1 1 − r n 1 − r = 1 2 ⋅ 1 − ( 1 2 ) n 1 − 1 2 S_n = a_1 \frac{1 - r^n}{1 - r} = \frac{1}{2} \cdot \frac{1 - (\frac{1}{2})^n}{1 - \frac{1}{2}} Sn=a11r1rn=211211(21)n
所以当n 趋于无穷时,只要算出前n 项和的值,就能判断这个人能不能走完。

高数的计算

n 趋于无穷时前n 项和的值写出来就是这样:
lim ⁡ n → + ∞ S n = lim ⁡ n → + ∞ 1 2 ⋅ 1 − ( 1 2 ) n 1 − 1 2 \lim\limits_{n \to +\infty} S_n = \lim\limits_{n \to +\infty} \frac{1}{2} \cdot \frac{1 - (\frac{1}{2})^n}{1 - \frac{1}{2}} n+limSn=n+lim211211(21)n
数列的项数n 肯定是大于零的,所以是趋于正无穷。因为公比 r < 1 r \lt 1 r<1,所以 ( 1 2 ) n (\frac{1}{2})^n (21)n 趋于无穷小。虽然已经可以一眼看出结果了,但是为了水,这里还是先把上式拆一下:
lim ⁡ n → + ∞ 1 2 ⋅ ( 1 1 − 1 2 − ( 1 2 ) n 1 − 1 2 ) \lim\limits_{n \to +\infty} \frac{1}{2} \cdot (\frac{1}{1 - \frac{1}{2}} - \frac{(\frac{1}{2})^n}{1 - \frac{1}{2}}) n+lim21(1211121(21)n)
由于 ( 1 2 ) n (\frac{1}{2})^n (21)n 趋于无穷小,也就是趋于0,而分母是 1 − 1 2 = 1 2 1 - \frac{1}{2} = \frac{1}{2} 121=21,这么一比较,结果就是0,因为分子相比分母太小了,这个比值不可能是任何比0 大的数。原式就变成:
lim ⁡ n → + ∞ 1 2 ⋅ 1 1 − 1 2 = 1 2 ⋅ 2 = 1 \lim\limits_{n \to +\infty} \frac{1}{2} \cdot \frac{1}{1 - \frac{1}{2}} = \frac{1}{2} \cdot 2 = 1 n+lim211211=212=1
所以刚才那个前n 项和 S n = 1 S_n = 1 Sn=1,也就证明最终这个人还是可以走过这段路程的,不多不少,可喜可贺。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值