深度推荐模型-DeepFM

DeepFM模型结合了FM和DNN,旨在解决CTR问题中的特征组合。它用FM替代Wide&Deep中的LR,自动学习交叉特征,同时原始特征作为FM和DNN的共享输入。模型结构包括一阶特征的FM层和用于高阶特征组合的Deep模块。代码实现中,模型分为线性、FM交叉和DNN高阶特征交叉三部分。
摘要由CSDN通过智能技术生成

一、动机

对于CTR问题,被证明的最有效的提升任务表现的策略是特征组合(Feature Interaction),在CTR问题的探究历史上来看就是如何更好地学习特征组合,进而更加精确的描述数据的特点。可以说这是基础推荐模型到深度推荐模型遵循的一个主要的思想。

  • DNN局限:当我们使用DNN网络解决推荐问题的时候由于在进行特征处理的时候我们需要使用one-hot编码来处理离散特征,导致输入的维度剧增,网络参数过于庞大。
    为了解决DNN参数量过大的局限性,可以采用非常经典的Field思想,将OneHot特征转换为Dense Vector
    转换过程
    然后再增加全连接层就可以实现高阶的特征组合
    结构
    但仍然缺少低阶的特征组合,于是增加FM来表示低阶的特征组合

  • FNN和PNN
    结合FM和DNN有两种方式,并行或者串行结合
    FNN模型
    FNN是使用预训练好的FM模块,得到隐向量,然后把隐向量作为DNN的输入,但是经过实验进一步发现,在Embedding layer和hidden layer1之间增加一个product层可以提高模型的表现,所以提出了PNN,使用product layer替换FM预训练层

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值