一、动机
对于CTR问题,被证明的最有效的提升任务表现的策略是特征组合(Feature Interaction),在CTR问题的探究历史上来看就是如何更好地学习特征组合,进而更加精确的描述数据的特点。可以说这是基础推荐模型到深度推荐模型遵循的一个主要的思想。
-
DNN局限:当我们使用DNN网络解决推荐问题的时候由于在进行特征处理的时候我们需要使用one-hot编码来处理离散特征,导致输入的维度剧增,网络参数过于庞大。
为了解决DNN参数量过大的局限性,可以采用非常经典的Field思想,将OneHot特征转换为Dense Vector
然后再增加全连接层就可以实现高阶的特征组合
但仍然缺少低阶的特征组合,于是增加FM来表示低阶的特征组合 -
FNN和PNN
结合FM和DNN有两种方式,并行或者串行结合
FNN模型
FNN是使用预训练好的FM模块,得到隐向量,然后把隐向量作为DNN的输入,但是经过实验进一步发现,在Embedding layer和hidden layer1之间增加一个product层可以提高模型的表现,所以提出了PNN,使用product layer替换FM预训练层