【推荐系统】DeepFM模型分析

目录

一、原理

二、pytorch代码分析

1、数据准备

2、构建模型

2.1、FM模型

2.2、DNN模型

2.3、DeepFM模型

三、代码讲解 & 连接


emb层收敛速度慢的原因

1、输入极端稀疏化。这就意味着里面有很多0,导致w无法更新。

2、参数数量往往占整个神经网络参数数量的大半以上。


复习总结

fm:输入离散特征,离散特征经过emb_table,得到emb,#[batch_size, num_fields, embed_dim]每个特征的emb做交叉;
lr:输入离散特征,离散特征经过emb_table,得到emb,接liner(xx, 1),得到1的预测prob,#[batch_size, 1];
dnn:输入离散特征+数值型特征,离散特征经过emb_table,得到emb+数值型特征#[batch_size, deep_dims],经过DNN,得到prob;

深度推荐模型之DeepFM - 知乎

参考代码:GitHub - datawhalechina/torch-rechub: A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend.

一、原理

解决的问题。(介绍的博客很多,建议看其他的人原理介绍。)

CTR预测任务中, 高阶特征和低阶特征的学习都非常的重要。 推荐模型我们也学习了很多,基本上是从最简单的线性模型(LR), 到考虑低阶特征交叉的FM, 到考虑高度交叉的神经网络,再到两者都考虑的W&D组合模型。 这样一串联就会发现前面这些模型存在的问题了, 简单盘点一下:

简单的线性模型虽然简单,同样这样是它的不足,就是限制了模型的表达能力,随着数据的大且复杂,这种模型并不能充分挖掘数据中的隐含信息,且忽略了特征间的交互,如果想交互,需要复杂的特征工程。

FM模型考虑了特征的二阶交叉,但是这种交叉仅停留在了二阶层次,虽然说能够进行高阶,但是计算量和复杂性一下子随着阶数的增加一下子就上来了。所以二阶是最常见的情况,会忽略高阶特征交叉的信息。

DNN,适合天然的高阶交叉信息的学习,但是低阶的交叉会忽略掉。

那么如果把上面这几种结构组合一下子,是不是效果会强大一些呢? 所以W&D模型在这个思路上进行了一个伟大的尝试,把简单的LR模型和DNN模型进行了组合, 使得模型既能够学习高阶组合特征,又能够学习低阶的特征模式,但是W&D的wide部分是用了LR模型, 这一块依然是需要一些经验性的特征工程的,且Wide部分和Deep部分需要两种不同的输入模式, 这个在具体实际应用中需要很强的业务经验。

所以总结起来就是:

  • FM与DNN共享输入emb向量。
  • 但是emb的参数更新是依赖于DNN部分,更新好的emb直接拿给FM去使用。

FM和DNN共享特征emb的好处

 关于【特征交互】

在CTR预测中, 学习用户点击行为背后的特征隐式交互非常重要。

二阶特征交互原来是这个意思:
通过对主流应用市场的研究,我们发现人们经常在用餐时间下载送餐的应用程序,这就表明应用类别和时间戳之间的(阶数-2)交互作用是CTR预测的一个信号。

三阶或者高阶特征交互是这个意思:
我们还发现男性青少年喜欢射击游戏和RPG游戏,这意味着应用类别、用户性别和年龄的(阶数-3)交互是CTR的另一个信号。

根据谷歌的W&D模型的应用, 作者发现同时考虑低阶和高阶的交互特征,比单独考虑其中之一有更多的改进

这也就是作者要进行本篇文章研究的原因或者动机之一(改进了LR,FM,DNN)。

论文介绍的小经验,

下面依然是工业上的一些使用经验, 这个模型也是工业上常用的模型:

  1. MLP这端神经网络的层数, 工业上的经验值不超过3层,一般用两层即可。
  2. MLP这端隐藏神经元的个数,工业上的经验值,一般128就差不多,最多不超过500
  3. embedding的维度一般不要超过50维, 经验值10-50

二、pytorch代码分析

https://github.com/zhongqiangwu960812/AI-RecommenderSystem/tree/master/DeepFM

使用是的部分Criteo数据集(原本包含45百万用户的点击记录,共有13个连续特征,26个分类特征。),介绍如下:

总共 13 列数值型特征 + 共有 26 列类别型特征(单值离散)

本次实验数据介绍:
- 1279个训练数据
- 320个验证数据
- 400个测试数据

torch.__version__: 1.3.1

加载所需要的包 

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from tqdm import tqdm
import datetime

# pytorch
import torch
from torch.utils.data import DataLoader, Dataset, TensorDataset
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

# from torchkeras import summary, Model
from sklearn.metrics import roc_auc_score

import warnings
warnings.filterwarnings('ignore')

1、数据准备

# 指定训练数据路径
file_path = './preprocessed_data/'


def prepared_data(file_path):
    # 读入训练集, 验证集和测试集
    train = pd.read_csv(file_path + 'train_set.csv')
    val = pd.read_csv(file_path + 'val_set.csv')
    test = pd.read_csv(file_path + 'test_set.csv')
    
    trn_x, trn_y = train.drop(columns='Label').values, train['Label'].values
    val_x, val_y = val.drop(columns='Label').values, val['Label'].values
    test_x = test.values
    
    fea_col = np.load(file_path + 'fea_col.npy', allow_pickle=True)
    
    return fea_col, (trn_x, trn_y), (val_x, val_y), test_x



"""导入数据"""
fea_cols, (trn_x, trn_y), (val_x, val_y), test_x = prepared_data(file_path)


# 把数据构建成数据管道
dl_train_dataset = TensorDataset(torch.tensor(trn_x).float(), torch.tensor(trn_y).float())
dl_val_dataset = TensorDataset(torch.tensor(val_x).float(), torch.tensor(val_y).float())

dl_train = DataLoader(dl_train_dataset, shuffle=True, batch_size=32)
dl_val = DataLoader(dl_val_dataset, shuffle=True, batch_size=32)

我们可以打印一下数据,看一下内容:

for x, y in iter(dl_train):
    print(x)
    print(x.shape, y)
    break


# 运行结果:

tensor([[8.4211e-02, 8.9118e-02, 0.0000e+00,  ..., 5.3100e+02, 0.0000e+00,
         0.0000e+00],
        [2.1053e-02, 2.5426e-04, 3.5474e-04,  ..., 5.4700e+02, 0.0000e+00,
         0.0000e+00],
        [0.0000e+00, 1.2713e-04, 0.0000e+00,  ..., 5.3100e+02, 0.0000e+00,
         0.0000e+00],
        ...,
        [0.0000e+00, 2.5426e-04, 1.1825e-04,  ..., 5.7000e+02, 2.7000e+01,
         4.6400e+02],
        [0.0000e+00, 8.3905e-03, 4.3751e-03,  ..., 3.8000e+02, 2.0000e+00,
         1.6000e+02],
        [0.0000e+00, 1.2713e-04, 0.0000e+00,  ..., 1.6300e+02, 0.0000e+00,
         0.0000e+00]])
torch.Size([32, 39]) tensor([0., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.])

[32, 39] 是因为总共有13+26个特征,32是dl_train = DataLoader(dl_train_dataset, shuffle=True, batch_size=32)定义的。遍历一次,拉取32个样本数据。

2、构建模型

这里依然是使用继承nn.Module基类构建模型, 并辅助应用模型容器进行封装。这个模型也是两部分组成, 左边是FM模型, 右边是DNN模型, DNN模型和之前的形式一样, 所以下面我们首先先实现这两个单模型,然后把它们拼起来

DeepFM的模型架构如下:

2.1、FM模型

class FM(nn.Module):
    """FM part"""
    def __init__(self, latent_dim, fea_num):
        """
        latent_dim: 各个离散特征隐向量的维度
        input_shape: 这个最后离散特征embedding之后的拼接和dense拼接的总特征个数
        """
        super(FM, self).__init__()
        
        self.latent_dim = latent_dim
        # 定义三个矩阵, 一个是全局偏置,
        # 一个是一阶权重矩阵, 
        # 一个是二阶交叉矩阵,注意这里的参数由于是可学习参数,需要用nn.Parameter进行定义
        self.w0 = nn.Parameter(torch.zeros([1,]))
        self.w1 = nn.Parameter(torch.rand([fea_num, 1]))
        self.w2 = nn.Parameter(torch.rand([fea_num, latent_dim]))
        
    def forward(self, inputs):   
        # 一阶交叉
# print("self.w0:{}".format(self.w0))
# self.w0:Parameter containing:
# tensor([-0.0227], requires_grad=True)
        

        # (samples_num, 1)    # B,1       
        first_order = self.w0 + torch.mm(inputs, self.w1)      
        # 二阶交叉  这个用FM的最终化简公式
        # (samples_num, 1)    # B,1
        second_order = 1/2 * torch.sum(
            torch.pow(torch.mm(inputs, self.w2), 2) - torch.mm(torch.pow(inputs,2), torch.pow(self.w2, 2)),
            dim = 1,
            keepdim = True
        )         
        
        return first_order + second_order 

2.2、DNN模型

class Dnn(nn.Module):
    """Dnn part"""
    def __init__(self, hidden_units, dropout=0.):
        """
        hidden_units: 列表, 每个元素表示每一层的神经单元个数, 比如[256, 128, 64], 两层网络, 第一层神经单元128, 第二层64, 第一个维度是输入维度
        dropout = 0.
        """
        super(Dnn, self).__init__()
        
        self.dnn_network = nn.ModuleList([nn.Linear(layer[0], layer[1]) for layer in list(zip(hidden_units[:-1], hidden_units[1:]))])
        self.dropout = nn.Dropout(dropout)
    
    def forward(self, x):  
        for linear in self.dnn_network:
            x = linear(x)
            x = F.relu(x)    
        x = self.dropout(x) 
        return x

中间有个部分不明白

for layer in list(zip(hidden_units[:-1], hidden_units[1:])):
    print(layer)

(256, 128)
(128, 64)

意思就是输入x,经过(256,128)的NN+relu。然后再经过(12,64)的NN+relu。最后接一个dropout。 

2.3、DeepFM模型

class DeepFM(nn.Module):
    def __init__(self, feature_columns, hidden_units, dnn_dropout=0.):
        """
        DeepFM:
        :param feature_columns: 特征信息, 这个传入的是fea_cols
        :param hidden_units: 隐藏单元个数, 一个列表的形式, 列表的长度代表层数, 每个元素代表每一层神经元个数
        """
        super(DeepFM, self).__init__()
        self.dense_feature_cols, self.sparse_feature_cols = feature_columns
        
        # embedding
        self.embed_layers = nn.ModuleDict({
            'embed_' + str(i): nn.Embedding(num_embeddings=feat['feat_num'], embedding_dim=feat['embed_dim'])
            for i, feat in enumerate(self.sparse_feature_cols)
        })
        print("self.embed_layers\n", self.embed_layers)
#         print("[0]:", self.sparse_feature_cols[0]['embed_dim']) # 8
        
        # 这里要注意Pytorch的linear和tf的dense的不同之处, 
        # Pytorch的linear需要输入特征和输出特征维度, 而传入的hidden_units的第一个是第一层隐藏的神经单元个数,这里需要加个输入维度
        self.fea_num = len(self.dense_feature_cols) + len(self.sparse_feature_cols)*self.sparse_feature_cols[0]['embed_dim']
        hidden_units.insert(0, self.fea_num) # 在hidden前加入输入特征的维度
        
        self.fm = FM(self.sparse_feature_cols[0]['embed_dim'], self.fea_num)     
        self.dnn_network = Dnn(hidden_units, dnn_dropout)
        self.nn_final_linear = nn.Linear(hidden_units[-1], 1)
    
    def forward(self, x):
        dense_inputs, sparse_inputs = x[:, :len(self.dense_feature_cols)], x[:, len(self.dense_feature_cols):]
        sparse_inputs = sparse_inputs.long()       # 转成long类型才能作为nn.embedding的输入
        sparse_embeds = [self.embed_layers['embed_'+str(i)](sparse_inputs[:, i]) for i in range(sparse_inputs.shape[1])]
        
#         print("sparse_inputs.shape[1]", sparse_inputs.shape[1]) # 26个离散型特征
#         for i in range(sparse_inputs.shape[1]): # 遍历第1个离散特征,i=1
#             print("(sparse_inputs[:, i])\n ", (sparse_inputs[:, i])) # 32个batchsize的第1个特征
#             tensor([201,  10,  12, 170, 154,  12,  52, 236, 161,  74,  76, 126,  51, 183,
#                    42, 149,  51,   9,  91, 126,  10,  37,  51,  51, 125, 230, 131, 132,
#                    12,  12, 130,  12])
#             c = self.embed_layers['embed_'+str(i)](sparse_inputs[:, i]) # [1,32,8]
            # 从emb table中lookup 第1特征的emb矩阵中,get 32个id对应的emb向量是多少,get到第1个特征中,id=201的vector是多少
#             print("self.embed_layers['embed_'+str(i)](sparse_inputs[:, i])\n", self.embed_layers['embed_'+str(i)](sparse_inputs[:, i]))
                       
        sparse_embeds = torch.cat(sparse_embeds, dim=-1) # 横向拼接, dim=-1按照最后一维拼接。
#         sparse_embeds_size  torch.Size([32, 208])
#         print("sparse_embeds_size ", sparse_embeds.shape)
        
        # 把离散特征和连续特征进行拼接作为FM和DNN的输入
        x = torch.cat([sparse_embeds, dense_inputs], dim=-1)
        # Wide
        wide_outputs = self.fm(x)
        # deep
        deep_outputs = self.nn_final_linear(self.dnn_network(x))
        
        # 模型的最后输出
        outputs = F.sigmoid(torch.add(wide_outputs, deep_outputs))
        
        return outputs

其中有些不理解的地方进行了打印,

self.embed_layers

self.embed_layers
 ModuleDict(
  (embed_0): Embedding(79, 8)
  (embed_1): Embedding(252, 8)
  (embed_10): Embedding(926, 8)
  (embed_11): Embedding(1239, 8)
  (embed_12): Embedding(824, 8)
  (embed_13): Embedding(20, 8)
  (embed_14): Embedding(819, 8)
  (embed_15): Embedding(1159, 8)
  (embed_16): Embedding(9, 8)
  (embed_17): Embedding(534, 8)
  (embed_18): Embedding(201, 8)
  (embed_19): Embedding(4, 8)
  (embed_2): Embedding(1293, 8)
  (embed_20): Embedding(1204, 8)
  (embed_21): Embedding(7, 8)
  (embed_22): Embedding(12, 8)
  (embed_23): Embedding(729, 8)
  (embed_24): Embedding(33, 8)
  (embed_25): Embedding(554, 8)
  (embed_3): Embedding(1043, 8)
  (embed_4): Embedding(30, 8)
  (embed_5): Embedding(7, 8)
  (embed_6): Embedding(1164, 8)
  (embed_7): Embedding(39, 8)
  (embed_8): Embedding(2, 8)
  (embed_9): Embedding(908, 8)
)

sparse_embeds = [self.embed_layers['embed_'+str(i)](sparse_inputs[:, i]) for i in range(sparse_inputs.shape[1])]

26个离散型特征:sparse_inputs.shape[1] 26。

(sparse_inputs[:, i]) ,假如i=1,(sparse_inputs[:, 1]),输入Batchsize的所有行第一列。

# 32个batchsize的第1个特征
(sparse_inputs[:, i])
  tensor([13, 15, 26, 27,  0, 64, 56, 26, 40, 15,  0, 43,  0, 43, 33,  0,  0, 36,
         0, 26,  0,  0,  0, 43, 26,  0, 33,  0, 33, 33, 75, 27])

self.embed_layers['embed_'+str(1)](sparse_inputs[:, 1])

从embed_1的embedding矩阵中,找到13,15,26。。。27的id对应的emb vector。

tensor([[-1.4639, -0.7128, -1.0563, -1.4808,  0.4443,  0.0396, -0.4131, -0.4098],
        [-0.3633,  0.3777,  0.6757, -0.3183,  0.7299,  1.1299,  0.7224,  0.2695],
        [ 2.2873,  0.2555,  0.7544, -1.0387,  2.0232,  1.0837,  1.1289, -0.4323],
        [-0.2851, -0.3741,  0.8221,  0.7784, -0.1501, -0.3380,  1.2154,  0.1392],
        [-0.2266, -0.0376, -0.1725,  0.4715,  1.5847,  0.0148, -0.7969, -0.3344],
        [ 1.3064, -0.2468,  0.9592, -0.6913,  0.1329,  0.2627, -0.0209, -0.9455],
        [ 0.6701,  0.0199,  1.1647, -0.0132,  0.5499, -0.6432,  2.4543,  0.2394],
        [ 2.2873,  0.2555,  0.7544, -1.0387,  2.0232,  1.0837,  1.1289, -0.4323],
        [ 0.0656,  0.8834, -1.2746, -0.5263, -1.3244, -0.5119,  0.8927, -1.0337],
        [-0.3633,  0.3777,  0.6757, -0.3183,  0.7299,  1.1299,  0.7224,  0.2695],
        [-0.2266, -0.0376, -0.1725,  0.4715,  1.5847,  0.0148, -0.7969, -0.3344],
        [-0.4535, -0.2620,  0.8880,  0.5566,  0.5189,  1.0608, -0.9572, -0.6825],
        [-0.2266, -0.0376, -0.1725,  0.4715,  1.5847,  0.0148, -0.7969, -0.3344],
        [-0.4535, -0.2620,  0.8880,  0.5566,  0.5189,  1.0608, -0.9572, -0.6825],
        [ 0.8973,  1.0933, -0.3527, -0.3034, -0.7779,  0.1933,  1.0803,  2.2664],
        [-0.2266, -0.0376, -0.1725,  0.4715,  1.5847,  0.0148, -0.7969, -0.3344],
        [-0.2266, -0.0376, -0.1725,  0.4715,  1.5847,  0.0148, -0.7969, -0.3344],
        [ 0.4971,  0.2588,  0.4070,  0.9371,  1.3312,  1.1213, -0.4729, -0.1009],
        [-0.2266, -0.0376, -0.1725,  0.4715,  1.5847,  0.0148, -0.7969, -0.3344],
        [ 2.2873,  0.2555,  0.7544, -1.0387,  2.0232,  1.0837,  1.1289, -0.4323],
        [-0.2266, -0.0376, -0.1725,  0.4715,  1.5847,  0.0148, -0.7969, -0.3344],
        [-0.2266, -0.0376, -0.1725,  0.4715,  1.5847,  0.0148, -0.7969, -0.3344],
        [-0.2266, -0.0376, -0.1725,  0.4715,  1.5847,  0.0148, -0.7969, -0.3344],
        [-0.4535, -0.2620,  0.8880,  0.5566,  0.5189,  1.0608, -0.9572, -0.6825],
        [ 2.2873,  0.2555,  0.7544, -1.0387,  2.0232,  1.0837,  1.1289, -0.4323],
        [-0.2266, -0.0376, -0.1725,  0.4715,  1.5847,  0.0148, -0.7969, -0.3344],
        [ 0.8973,  1.0933, -0.3527, -0.3034, -0.7779,  0.1933,  1.0803,  2.2664],
        [-0.2266, -0.0376, -0.1725,  0.4715,  1.5847,  0.0148, -0.7969, -0.3344],
        [ 0.8973,  1.0933, -0.3527, -0.3034, -0.7779,  0.1933,  1.0803,  2.2664],
        [ 0.8973,  1.0933, -0.3527, -0.3034, -0.7779,  0.1933,  1.0803,  2.2664],
        [-1.9452, -1.4843, -0.4154, -0.0963, -0.3846,  0.4062, -0.5578, -0.4342],
        [-0.2851, -0.3741,  0.8221,  0.7784, -0.1501, -0.3380,  1.2154,  0.1392]],
       grad_fn=<EmbeddingBackward>)

输入x,y数据

(features, labels)
 (tensor([[0.0000e+00, 3.8139e-04, 4.7298e-04,  ..., 7.1000e+02, 2.0000e+00,
         3.6600e+02],
        [0.0000e+00, 3.8139e-04, 1.7737e-03,  ..., 5.7300e+02, 0.0000e+00,
         0.0000e+00],
        [6.3158e-02, 1.2713e-04, 3.5474e-04,  ..., 6.7000e+01, 2.7000e+01,
         4.0500e+02],
        ...,
        [0.0000e+00, 4.8309e-03, 0.0000e+00,  ..., 4.3100e+02, 2.7000e+01,
         5.4500e+02],
        [0.0000e+00, 8.8991e-03, 0.0000e+00,  ..., 1.6300e+02, 1.0000e+00,
         5.4400e+02],
        [0.0000e+00, 3.8139e-04, 8.8684e-03,  ..., 6.7000e+01, 2.7000e+01,
         4.0500e+02]]), tensor([0., 0., 0., 0., 1., 1., 0., 1., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0.,
        0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 1., 1., 0., 0.]))

features.shape torch.Size([32, 39])
labels.shape torch.Size([32])

然后再将所有的emb特征,根据dim=-1,最后一维(横向拼接),sparse_embeds_size  torch.Size([32, 208])。当做所有离散特征的处理结果。

上述代码只能处理单值离散型特征。

得到sparse_embeds:

  • 单值离散特征:

feat_a = [12], lookup idx=12的emb vector即可。

  • 如果想要处理变长离散特征, pad_size=5:

feat_b = [12,14,9,0,0], lookup idx=12,14,9的emb vector, 再除以3。

最后整个DeepFM模型结构如下,

DeepFM(
  (embed_layers): ModuleDict(
    (embed_0): Embedding(79, 8)
    (embed_1): Embedding(252, 8)
    (embed_10): Embedding(926, 8)
    (embed_11): Embedding(1239, 8)
    (embed_12): Embedding(824, 8)
    (embed_13): Embedding(20, 8)
    (embed_14): Embedding(819, 8)
    (embed_15): Embedding(1159, 8)
    (embed_16): Embedding(9, 8)
    (embed_17): Embedding(534, 8)
    (embed_18): Embedding(201, 8)
    (embed_19): Embedding(4, 8)
    (embed_2): Embedding(1293, 8)
    (embed_20): Embedding(1204, 8)
    (embed_21): Embedding(7, 8)
    (embed_22): Embedding(12, 8)
    (embed_23): Embedding(729, 8)
    (embed_24): Embedding(33, 8)
    (embed_25): Embedding(554, 8)
    (embed_3): Embedding(1043, 8)
    (embed_4): Embedding(30, 8)
    (embed_5): Embedding(7, 8)
    (embed_6): Embedding(1164, 8)
    (embed_7): Embedding(39, 8)
    (embed_8): Embedding(2, 8)
    (embed_9): Embedding(908, 8)
  )
  (fm): FM()
  (dnn_network): Dnn(
    (dnn_network): ModuleList(
      (0): Linear(in_features=221, out_features=128, bias=True)
      (1): Linear(in_features=128, out_features=64, bias=True)
      (2): Linear(in_features=64, out_features=32, bias=True)
    )
    (dropout): Dropout(p=0.0, inplace=False)
  )
  (nn_final_linear): Linear(in_features=32, out_features=1, bias=True)
)

三、代码讲解 & 连接

推荐算法之: DeepFM及使用DeepCTR测试

深度学习deepctr 推荐算法召回youtube和排序deepfm,保存与加载、预测和部署(使用deepctr实现deepfm)

一些好的链接:

DeepFM推荐系统 论文+代码 (数据来源+代码)

https://github.com/whk6688/tensorflow-DeepFM(提供增量训练的代码)

AI上推荐 之 FNN、DeepFM与NFM(FM在深度学习中的身影重现) (大部分理论介绍来自于这里)

https://github.com/zhongqiangwu960812/AI-RecommenderSystem/tree/master/DeepFM deepfm pytorch版

推荐算法之: DeepFM及使用DeepCTR测试

推荐系统遇上深度学习(一)--FM模型理论和实践(可以回顾下FM原理)

数据下载地址:

https://s3-eu-west-1.amazonaws.com/kaggle-display-advertising-challenge-dataset/dac.tar.gz

DeepFM模型是一种结合了深度学习和传统的因子分解机(Factorization Machines, FMs)的推荐系统模型。它通过深度神经网络来学习特征的高阶交叉组合,同时保留了FM的线性部分,以此来捕捉特征的低阶交互。保存DeepFM模型通常包括保存模型的参数、结构以及训练过程中的状态信息,以便之后能够进行模型的加载和预测。在实际操作中,可以使用各种深度学习框架(例如TensorFlow或PyTorch)提供的模型保存和加载机制来实现这一点。 以TensorFlow为例,你可以使用`tf.train.Checkpoint`和`tf.train.CheckpointManager`来保存和管理模型的训练状态。以下是一个简单的保存流程示例: 1. 导入需要的模块: ```python import tensorflow as tf ``` 2. 定义模型结构: ```python class DeepFMModel(tf.keras.Model): # 定义DeepFM模型的结构 pass ``` 3. 创建模型实例和Checkpoint: ```python model = DeepFMModel(...) ckpt = tf.train.Checkpoint(step=tf.Variable(1), optimizer=model.optimizer, net=model) manager = tf.train.CheckpointManager(ckpt, './tf_ckpts', max_to_keep=3) ``` 4. 训练模型,并在适当的时候保存状态: ```python for example in data_loader: loss = model.train_step(example) ckpt.step.assign_add(1) if int(ckpt.step) % save_every == 0: save_path = manager.save() print(f'Saved checkpoint for step {int(ckpt.step)}: {save_path}') ``` 加载模型时,可以使用以下代码: ```python restored_model = DeepFMModel(...) ckpt.restore(manager.latest_checkpoint) if manager.latest_checkpoint: print(f'Restored from {manager.latest_checkpoint}') else: print('Initializing from scratch.') ``` 确保在保存和加载模型时,模型的结构、输入数据的预处理方式等都保持一致,以保证模型的正确加载和使用。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值