两个重要极限
lim
x
→
0
sin
x
x
=
1
lim
x
→
∞
(
1
+
1
x
)
x
=
e
\begin{aligned} &\lim \limits_{x\to0} \frac{\sin{x}}{x}=1 \\ &\lim \limits_{x\to \infty} (1+\frac{1}{x})^x=e \end{aligned}
x→0limxsinx=1x→∞lim(1+x1)x=e
推广:
lim
x
→
0
(
1
+
x
)
1
x
=
e
lim
x
→
∞
(
1
−
1
x
)
x
=
e
−
1
=
1
e
lim
x
→
0
(
1
−
x
)
1
x
=
e
−
1
=
1
e
\begin{aligned} &\lim \limits_{x\to 0} (1+x)^\frac{1}{x}=e\\ &\lim \limits_{x\to \infty} (1-\frac{1}{x})^x=e^{-1}=\frac{1}{e}\\ &\lim \limits_{x\to 0} (1-x)^\frac{1}{x}=e^{-1}=\frac{1}{e} \end{aligned}
x→0lim(1+x)x1=ex→∞lim(1−x1)x=e−1=e1x→0lim(1−x)x1=e−1=e1
再推广:
lim
x
→
∞
(
1
+
a
x
)
x
=
e
a
\begin{aligned} &\lim \limits_{x\to \infty} (1+\frac{a}{x})^x=e^{a}\\ \end{aligned}
x→∞lim(1+xa)x=ea
证明:
幂指函数
[
f
(
x
)
]
g
(
x
)
[f(x)]^{g(x)}
[f(x)]g(x)形式,转换成
e
g
(
x
)
ln
[
f
(
x
)
]
e^{g(x)\ln[f(x)]}
eg(x)ln[f(x)] 证明。 同理,幂指函数求极限可以这样证明。
常用基本极限
lim n → ∞ n n = 1 lim n → ∞ a n = 1 ( a > 0 ) lim x → 0 a x − 1 x = ln a lim x → ∞ a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 b m x m + b m − 1 x m − 1 + ⋯ + b 1 x + b 0 = { a n b m , n = m 0 , n < m ∞ , n > m lim n → ∞ x n = { 0 , ∣ x ∣ < 1 ∞ , ∣ x ∣ > 1 1 , x = 1 不存在 , x = − 1 lim n → ∞ e n x = { 0 , x < 0 + ∞ , x > 0 1 , x = 0 \begin{aligned} &\lim \limits_{n \to \infty}\sqrt[n]{n}=1 \qquad \lim \limits_{n \to \infty}\sqrt[n]{a}=1(a>0) \qquad \lim\limits_{x\to0}\frac{a^x-1}{x}=\ln a \\ &\lim\limits_{x\to\infty}\frac{a_nx^n+a_{n-1}x^{n-1}+\cdots+a_{1}x+a_0}{b_{m}x^{m}+b_{m-1}x^{m-1}+\cdots+b_{1}x+b_0}= \left\{ \begin{aligned} \frac{a_n}{b_m} &\text{ , }n=m \\ 0 &\text{ , } n<m \\ \infty &\text{ , } n>m \\ \end{aligned} \right. \\ &\lim\limits_{n\to\infty}x^n= \left\{ \begin{aligned} 0 \text{ , }& |x|<1 \\ \infty \text{ , }& |x|>1 \\ 1 \text{ , }& x=1 \\ \text{不存在} \text{ , }& x=-1 \end{aligned} \right. \qquad \lim\limits_{n\to\infty}e^{nx}= \left\{ \begin{aligned} 0 \text{ , }& x<0 \\ +\infty \text{ , }& x>0 \\ 1 \text{ , }& x=0 \\ \end{aligned} \right. \end{aligned} n→∞limnn=1n→∞limna=1(a>0)x→0limxax−1=lnax→∞limbmxm+bm−1xm−1+⋯+b1x+b0anxn+an−1xn−1+⋯+a1x+a0=⎩ ⎨ ⎧bman0∞ , n=m , n<m , n>mn→∞limxn=⎩ ⎨ ⎧0 , ∞ , 1 , 不存在 , ∣x∣<1∣x∣>1x=1x=−1n→∞limenx=⎩ ⎨ ⎧0 , +∞ , 1 , x<0x>0x=0
特别注意上述公式中 lim n → ∞ x n = ∞ ( ∣ x ∣ > 1 ) \lim\limits_{n\to\infty}x^n=\infty\ (|x|>1) n→∞limxn=∞ (∣x∣>1)和 lim n → ∞ x n 不存在 ( x = − 1 ) \lim\limits_{n\to\infty}x^n不存在\ (x=-1) n→∞limxn不存在 (x=−1)的理解,在上网查阅后,个人总结如下:
个人笔记,如有错误,烦请指正 : )