两个重要极限和常用基本极限

两个重要极限

lim ⁡ x → 0 sin ⁡ x x = 1 lim ⁡ x → ∞ ( 1 + 1 x ) x = e \begin{aligned} &\lim \limits_{x\to0} \frac{\sin{x}}{x}=1 \\ &\lim \limits_{x\to \infty} (1+\frac{1}{x})^x=e \end{aligned} x0limxsinx=1xlim(1+x1)x=e
推广:
lim ⁡ x → 0 ( 1 + x ) 1 x = e lim ⁡ x → ∞ ( 1 − 1 x ) x = e − 1 = 1 e lim ⁡ x → 0 ( 1 − x ) 1 x = e − 1 = 1 e \begin{aligned} &\lim \limits_{x\to 0} (1+x)^\frac{1}{x}=e\\ &\lim \limits_{x\to \infty} (1-\frac{1}{x})^x=e^{-1}=\frac{1}{e}\\ &\lim \limits_{x\to 0} (1-x)^\frac{1}{x}=e^{-1}=\frac{1}{e} \end{aligned} x0lim(1+x)x1=exlim(1x1)x=e1=e1x0lim(1x)x1=e1=e1
再推广:
lim ⁡ x → ∞ ( 1 + a x ) x = e a \begin{aligned} &\lim \limits_{x\to \infty} (1+\frac{a}{x})^x=e^{a}\\ \end{aligned} xlim(1+xa)x=ea
证明:
幂指函数 [ f ( x ) ] g ( x ) [f(x)]^{g(x)} [f(x)]g(x)形式,转换成 e g ( x ) ln ⁡ [ f ( x ) ] e^{g(x)\ln[f(x)]} eg(x)ln[f(x)] 证明。 同理,幂指函数求极限可以这样证明。
在这里插入图片描述

常用基本极限

lim ⁡ n → ∞ n n = 1 lim ⁡ n → ∞ a n = 1 ( a > 0 ) lim ⁡ x → 0 a x − 1 x = ln ⁡ a lim ⁡ x → ∞ a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 b m x n + b m − 1 x m − 1 + ⋯ + b 1 x + b 0 = { a n b m  ,  n = m 0  ,  n < m ∞  ,  n > m lim ⁡ n → ∞ x n = { 0  ,  ∣ x ∣ < 1 ∞  ,  ∣ x ∣ > 1 1  ,  x = 1 不存在 ,  x = − 1 lim ⁡ n → ∞ e n x = { 0  ,  x < 0 + ∞  ,  x > 0 1  ,  x = 0 \begin{aligned} &\lim \limits_{n \to \infty}\sqrt[n]{n}=1 \qquad \lim \limits_{n \to \infty}\sqrt[n]{a}=1(a>0) \qquad \lim\limits_{x\to0}\frac{a^x-1}{x}=\ln a \\ &\lim\limits_{x\to\infty}\frac{a_nx^n+a_{n-1}x^{n-1}+\cdots+a_{1}x+a_0}{b_{m}x^{n}+b_{m-1}x^{m-1}+\cdots+b_{1}x+b_0}= \left\{ \begin{aligned} \frac{a_n}{b_m} &\text{ , }n=m \\ 0 &\text{ , } n<m \\ \infty &\text{ , } n>m \\ \end{aligned} \right. \\ &\lim\limits_{n\to\infty}x^n= \left\{ \begin{aligned} 0 \text{ , }& |x|<1 \\ \infty \text{ , }& |x|>1 \\ 1 \text{ , }& x=1 \\ \text{不存在} \text{ , }& x=-1 \end{aligned} \right. \qquad \lim\limits_{n\to\infty}e^{nx}= \left\{ \begin{aligned} 0 \text{ , }& x<0 \\ +\infty \text{ , }& x>0 \\ 1 \text{ , }& x=0 \\ \end{aligned} \right. \end{aligned} nlimnn =1nlimna =1(a>0)x0limxax1=lnaxlimbmxn+bm1xm1++b1x+b0anxn+an1xn1++a1x+a0= bman0 , n=m , n<m , n>mnlimxn= 0 ,  , 1 , 不存在 , x<1x>1x=1x=1nlimenx= 0 , + , 1 , x<0x>0x=0
特别注意上述公式中 lim ⁡ n → ∞ x n = ∞   ( ∣ x ∣ > 1 ) \lim\limits_{n\to\infty}x^n=\infty\ (|x|>1) nlimxn= (x>1) lim ⁡ n → ∞ x n 不存在  ( x = − 1 ) \lim\limits_{n\to\infty}x^n不存在\ (x=-1) nlimxn不存在 (x=1)的理解,在上网查阅后,个人总结如下:
在这里插入图片描述


个人笔记,如有错误,欢迎指正 : )

  • 12
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值