定积分的计算【高等数学 基础篇】

高等数学 基础篇 ⦾ 武忠祥

部分公式条件省略(懒得敲了XD)

1. 牛顿-莱布尼兹公式

如果函数 f ( x ) 在区间 [ a , b ] 上连续,并且存在原函数 F ( x ) ,则 \text{如果函数}f(x)\text{在区间}[a,b]\text{上连续,并且存在原函数}F(x)\text{,则} 如果函数f(x)在区间[a,b]上连续,并且存在原函数F(x),则
∫ a b f ( x ) d x = F ( x ) ∣ a b = F ( b ) − F ( a ) \int_{a}^{b}f(x)\mathrm{d}x=F(x)\Big|_a^b=F\left(b\right)-F(a) abf(x)dx=F(x) ab=F(b)F(a)

2. 换元积分法

∫ a b f ( x ) d x = ∫ α β f [ φ ( t ) ] φ ′ ( t ) d t \int_{a}^{b}f(x)\mathrm{d}x=\int_{\alpha}^{\beta}f\left[\varphi(t)\right]\varphi^{\prime}(t)\mathrm{d}t abf(x)dx=αβf[φ(t)]φ(t)dt

3. 分部积分法

∫ a b u v ′ d x = u v ∣ a b − ∫ a b u ′ v d x \mathop {\int_a^b uv'\mathrm{d}x=uv \Big|_a^b - \int_a^bu'v\mathrm{d}x} abuvdx=uv ababuvdx

∫ a b u d v = u v ∣ a b − ∫ a b v d u \mathop {\int_a^b u\mathrm{d}v=uv \Big|_a^b - \int_a^bv\mathrm{d}u} abudv=uv ababvdu

4. 利用奇偶性,周期性

( 1 )  设 f ( x ) 为 [ a , b ] 上的连续函数 ( a > 0 ) ,则 (1)\ 设f(x)为[a,b]上的连续函数(a>0),则 (1) f(x)[a,b]上的连续函数(a>0),则
∫ − a a f ( x ) d x = { 0   , f ( x ) 为奇函数, 2 ∫ 0 a f ( x ) d x   , f ( x ) 为偶函数。 \int_{-a}^{a}f(x)\mathrm{d}x= \begin{cases}0\ , f(x)\text{为奇函数,}\\ 2\displaystyle\int_{0}^{a}f(x)\mathrm{d}x\ , f(x)\text{为偶函数。} \end{cases} aaf(x)dx= 0 ,f(x)为奇函数,20af(x)dx ,f(x)为偶函数。
( 2 )  设 f ( x ) 是以 T 为周期的连续函数,则 (2)\ 设f(x)是以T为周期的连续函数,则 (2) f(x)是以T为周期的连续函数,则
∫ a a + T f ( x ) d x = ∫ 0 T f ( x ) d x \int_a^{a+T}f(x)\mathrm{d}x=\int_0^Tf(x)\mathrm{d}x aa+Tf(x)dx=0Tf(x)dx

5. 利用公式

( 1 ) ∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = { n − 1 n ⋅ n − 3 n − 2 ⋯ 1 2 ⋅ π 2 , n 偶 n − 1 n ⋅ n − 3 n − 2 ⋯ 2 3 , n 奇 ( n > 1 ) ( 2 ) f ( x ) 在[0, 1]连续, ∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x \begin{aligned} &(1)\int_0^{\frac\pi2}\sin^nx\mathrm{d}x=\int_0^{\frac\pi2}\cos^nx\mathrm{d}x= \begin{cases} \displaystyle\frac{n-1}n\cdot\frac{n-3}{n-2}\cdots\frac12\cdot\frac\pi2, &n\text{偶}\\ \displaystyle\frac{n-1}n\cdot\frac{n-3}{n-2}\cdots\frac23, &n\text{奇}(n>1) \end{cases} \\ &(2)f(x)\text{在[0, 1]连续,}\int_{0}^{\pi}xf(\sin x)\mathrm{d}x=\frac\pi2\int _{0}^{\pi }f(\sin x)\mathrm{d}x \end{aligned} (1)02πsinnxdx=02πcosnxdx= nn1n2n3212π,nn1n2n332,nn(n>1)(2)f(x)[0, 1]连续,0πxf(sinx)dx=2π0πf(sinx)dx
【例 1】 ∫ 0 π 2 sin ⁡ 4 x d x = 3 4 ⋅ 1 2 ⋅ π 2 = 3 π 16 【例 2】 ∫ 0 π x sin ⁡ x 1 + cos ⁡ 2 x d x = π 2 ∫ 0 π sin ⁡ x 1 + cos ⁡ 2 x d x = − π 2 arctan ⁡ ( cos ⁡ x ) ∣ 0 π = − π 2 [ − π 4 − π 4 ] = π 2 4 \begin{aligned} &\text{【例 1】}\int_{0}^{\frac\pi2}\sin^4x\mathrm{d}x=\frac34\cdot\frac12\cdot\frac\pi2=\frac{3\pi}{16} \\ &\text{【例 2】}\int_{0}^{\pi}\frac{x\sin x}{1+\cos^{2}x}\mathrm{d}x=\frac{\pi}{2}\int_{0}^{\pi}\frac{\sin x}{1+\cos^{2}x}\mathrm{d}x=-\frac{\pi}{2}\arctan(\cos x)\Big|_0^{\pi}=-\frac{\pi}{2}\left[-\frac{\pi}{4}-\frac{\pi}{4}\right]=\frac{\pi^2}{4} \end{aligned} 【例 102πsin4xdx=43212π=163π【例 20π1+cos2xxsinxdx=2π0π1+cos2xsinxdx=2πarctan(cosx) 0π=2π[4π4π]=4π2


个人笔记,如有错误,烦请指正 : )

  • 14
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值