高等数学 基础篇 ⦾ 武忠祥
部分公式条件省略(懒得敲了XD)
1. 牛顿-莱布尼兹公式
如果函数
f
(
x
)
在区间
[
a
,
b
]
上连续,并且存在原函数
F
(
x
)
,则
\text{如果函数}f(x)\text{在区间}[a,b]\text{上连续,并且存在原函数}F(x)\text{,则}
如果函数f(x)在区间[a,b]上连续,并且存在原函数F(x),则
∫
a
b
f
(
x
)
d
x
=
F
(
x
)
∣
a
b
=
F
(
b
)
−
F
(
a
)
\int_{a}^{b}f(x)\mathrm{d}x=F(x)\Big|_a^b=F\left(b\right)-F(a)
∫abf(x)dx=F(x)
ab=F(b)−F(a)
2. 换元积分法
∫ a b f ( x ) d x = ∫ α β f [ φ ( t ) ] φ ′ ( t ) d t \int_{a}^{b}f(x)\mathrm{d}x=\int_{\alpha}^{\beta}f\left[\varphi(t)\right]\varphi^{\prime}(t)\mathrm{d}t ∫abf(x)dx=∫αβf[φ(t)]φ′(t)dt
3. 分部积分法
∫
a
b
u
v
′
d
x
=
u
v
∣
a
b
−
∫
a
b
u
′
v
d
x
\mathop {\int_a^b uv'\mathrm{d}x=uv \Big|_a^b - \int_a^bu'v\mathrm{d}x}
∫abuv′dx=uv
ab−∫abu′vdx
即
∫
a
b
u
d
v
=
u
v
∣
a
b
−
∫
a
b
v
d
u
\mathop {\int_a^b u\mathrm{d}v=uv \Big|_a^b - \int_a^bv\mathrm{d}u}
∫abudv=uv
ab−∫abvdu
4. 利用奇偶性,周期性
(
1
)
设
f
(
x
)
为
[
a
,
b
]
上的连续函数
(
a
>
0
)
,则
(1)\ 设f(x)为[a,b]上的连续函数(a>0),则
(1) 设f(x)为[a,b]上的连续函数(a>0),则
∫
−
a
a
f
(
x
)
d
x
=
{
0
,
f
(
x
)
为奇函数,
2
∫
0
a
f
(
x
)
d
x
,
f
(
x
)
为偶函数。
\int_{-a}^{a}f(x)\mathrm{d}x= \begin{cases}0\ , f(x)\text{为奇函数,}\\ 2\displaystyle\int_{0}^{a}f(x)\mathrm{d}x\ , f(x)\text{为偶函数。} \end{cases}
∫−aaf(x)dx=⎩
⎨
⎧0 ,f(x)为奇函数,2∫0af(x)dx ,f(x)为偶函数。
(
2
)
设
f
(
x
)
是以
T
为周期的连续函数,则
(2)\ 设f(x)是以T为周期的连续函数,则
(2) 设f(x)是以T为周期的连续函数,则
∫
a
a
+
T
f
(
x
)
d
x
=
∫
0
T
f
(
x
)
d
x
\int_a^{a+T}f(x)\mathrm{d}x=\int_0^Tf(x)\mathrm{d}x
∫aa+Tf(x)dx=∫0Tf(x)dx
5. 利用公式
(
1
)
∫
0
π
2
sin
n
x
d
x
=
∫
0
π
2
cos
n
x
d
x
=
{
n
−
1
n
⋅
n
−
3
n
−
2
⋯
1
2
⋅
π
2
,
n
偶
n
−
1
n
⋅
n
−
3
n
−
2
⋯
2
3
,
n
奇
(
n
>
1
)
(
2
)
f
(
x
)
在[0, 1]连续,
∫
0
π
x
f
(
sin
x
)
d
x
=
π
2
∫
0
π
f
(
sin
x
)
d
x
\begin{aligned} &(1)\int_0^{\frac\pi2}\sin^nx\mathrm{d}x=\int_0^{\frac\pi2}\cos^nx\mathrm{d}x= \begin{cases} \displaystyle\frac{n-1}n\cdot\frac{n-3}{n-2}\cdots\frac12\cdot\frac\pi2, &n\text{偶}\\ \displaystyle\frac{n-1}n\cdot\frac{n-3}{n-2}\cdots\frac23, &n\text{奇}(n>1) \end{cases} \\ &(2)f(x)\text{在[0, 1]连续,}\int_{0}^{\pi}xf(\sin x)\mathrm{d}x=\frac\pi2\int _{0}^{\pi }f(\sin x)\mathrm{d}x \end{aligned}
(1)∫02πsinnxdx=∫02πcosnxdx=⎩
⎨
⎧nn−1⋅n−2n−3⋯21⋅2π,nn−1⋅n−2n−3⋯32,n偶n奇(n>1)(2)f(x)在[0, 1]连续,∫0πxf(sinx)dx=2π∫0πf(sinx)dx
【例 1】
∫
0
π
2
sin
4
x
d
x
=
3
4
⋅
1
2
⋅
π
2
=
3
π
16
【例 2】
∫
0
π
x
sin
x
1
+
cos
2
x
d
x
=
π
2
∫
0
π
sin
x
1
+
cos
2
x
d
x
=
−
π
2
arctan
(
cos
x
)
∣
0
π
=
−
π
2
[
−
π
4
−
π
4
]
=
π
2
4
\begin{aligned} &\text{【例 1】}\int_{0}^{\frac\pi2}\sin^4x\mathrm{d}x=\frac34\cdot\frac12\cdot\frac\pi2=\frac{3\pi}{16} \\ &\text{【例 2】}\int_{0}^{\pi}\frac{x\sin x}{1+\cos^{2}x}\mathrm{d}x=\frac{\pi}{2}\int_{0}^{\pi}\frac{\sin x}{1+\cos^{2}x}\mathrm{d}x=-\frac{\pi}{2}\arctan(\cos x)\Big|_0^{\pi}=-\frac{\pi}{2}\left[-\frac{\pi}{4}-\frac{\pi}{4}\right]=\frac{\pi^2}{4} \end{aligned}
【例 1】∫02πsin4xdx=43⋅21⋅2π=163π【例 2】∫0π1+cos2xxsinxdx=2π∫0π1+cos2xsinxdx=−2πarctan(cosx)
0π=−2π[−4π−4π]=4π2
【附】几何意义
① ∫ 0 a x 2 − x 2 d x = π a 2 4 ( a > 0 ) ② ∫ 0 a 2 a x − x 2 d x = π a 2 4 ③ ∫ 0 2 a 2 a x − x 2 d x = π a 2 2 \begin{array}{ll} &①\displaystyle\int_{0}^{a}\sqrt{x^{2}-x^{2}} dx=\frac{\pi a^{2}}{4}\quad(a>0)\\ &②\displaystyle\int_{0}^{a}\sqrt{2ax-x^{2}} dx=\frac{\pi a^{2}}{4}\\ &③\displaystyle\int_{0}^{2a}\sqrt{2ax-x^{2}}dx=\frac{\pi a^{2}}{2} &&&&&&&&&&&&&&&&& \end{array} ①∫0ax2−x2dx=4πa2(a>0)②∫0a2ax−x2dx=4πa2③∫02a2ax−x2dx=2πa2
作图很容易得出,①是半径为 a a a 的圆 ⊙ O \odot O ⊙O 在第一象限的面积;③是半径为 a a a 的圆 ⊙ a \odot a ⊙a 在第一象限的面积;②是半径为 a a a 的圆 ⊙ a \odot a ⊙a 在第一象限的面积的一半。
个人笔记,如有错误,烦请指正 : )