基本公式
( 1 ) ∫ 0 d x = C ( 3 ) ∫ 1 x d x = ln ∣ x ∣ + C ( 5 ) ∫ e x d x = e x + C ( 7 ) ∫ cos x d x = sin x + C ( 9 ) ∫ csc 2 x d x = − cot x + C ( 11 ) ∫ csc x cot x d x = − csc x + C ( 13 ) ∫ 1 1 + x 2 d x = arctan x + C ( 15 ) ∫ d x a 2 + x 2 = 1 a arctan x a + C ( 17 ) ∫ d x x 2 + a 2 = ln ( x + x 2 + a 2 ) + C ( 19 ) ∫ sec x d x = ln ∣ sec x + tan x ∣ + C ( 2 ) ∫ x α d x = 1 α + 1 x α + 1 + C ( α ≠ − 1 ) ( 4 ) ∫ a x = a x ln a + C ( a > 0 , a ≠ 1 ) ( 6 ) ∫ sin x d x = − cos x + C ( 8 ) ∫ sec 2 x d x = tan x + C ( 10 ) ∫ sec x tan x d x = sec x + C ( 12 ) ∫ 1 1 − x 2 d x = arcsin x + C ( 14 ) ∫ d x a 2 − x 2 = arcsin x a + C ( 16 ) ∫ d x x 2 − a 2 = 1 2 a ln ∣ x − a x + a ∣ + C ( 18 ) ∫ d x x 2 − a 2 = ln ( x + x 2 − a 2 ) + C ( 20 ) ∫ csc x d x = − ln ∣ csc x + cot x ∣ + C \begin{aligned} &(1)\ \int0dx=C \\ &(3)\ \int\frac{1}{x}dx=\ln|x|+C \\ &(5)\ \int e^xdx=e^x+C \\ &(7)\ \int\cos xdx=\sin x+C \\ &(9)\ \int\csc^2xdx=-\cot x+C \\ &(11)\ \int\csc x\cot xdx=-\csc x+C \\ &(13)\ \int\frac{1}{1+x^2}dx=\arctan x +C\\ &(15)\ \int\frac{dx}{a^2+x^2}=\frac{1}{a}\arctan \frac{x}{a} +C\\ &(17)\ \int\frac{dx}{\sqrt{x^2+a^2}}= \ln(x+\sqrt{x^2+a^2}) +C \\ &(19)\ \int\sec xdx=\ln|\sec x+\tan x| +C \\ \end{aligned} \qquad \begin{aligned} &(2)\ \int x^\alpha dx=\frac{1}{\alpha+1}x^{\alpha+1} +C\ (\alpha\ne-1) \\ &(4)\ \int a^x=\frac{a^x}{\ln a} +C\ (a>0,\ a\ne1) \\ &(6)\ \int\sin xdx=-\cos x +C \\ &(8)\ \int\sec^2 xdx=\tan x +C \\ &(10)\ \int\sec x\tan xdx=\sec x +C \\ &(12)\ \int\frac{1}{\sqrt{1-x^2}}dx=\arcsin x +C \\ &(14)\ \int\frac{dx}{\sqrt{a^2-x^2}}=\arcsin \frac{x}{a} +C \\ &(16)\ \int\frac{dx}{x^2-a^2}=\frac{1}{2a}\ln|\frac{x-a}{x+a}| +C \\ &(18)\ \int\frac{dx}{\sqrt{x^2-a^2}}= \ln(x+\sqrt{x^2-a^2}) +C \\ &(20)\ \int\csc xdx=-\ln|\csc x+\cot x| +C \\ \end{aligned} (1) ∫0dx=C(3) ∫x1dx=ln∣x∣+C(5) ∫exdx=ex+C(7) ∫cosxdx=sinx+C(9) ∫csc2xdx=−cotx+C(11) ∫cscxcotxdx=−cscx+C(13) ∫1+x21dx=arctanx+C(15) ∫a2+x2dx=a1arctanax+C(17) ∫x2+a2dx=ln(x+x2+a2)+C(19) ∫secxdx=ln∣secx+tanx∣+C(2) ∫xαdx=α+11xα+1+C (α=−1)(4) ∫ax=lnaax+C (a>0, a=1)(6) ∫sinxdx=−cosx+C(8) ∫sec2xdx=tanx+C(10) ∫secxtanxdx=secx+C(12) ∫1−x21dx=arcsinx+C(14) ∫a2−x2dx=arcsinax+C(16) ∫x2−a2dx=2a1ln∣x+ax−a∣+C(18) ∫x2−a2dx=ln(x+x2−a2)+C(20) ∫cscxdx=−ln∣cscx+cotx∣+C
积分法
换元积分法
第一换元积分法
设
∫
f
(
u
)
d
u
=
F
(
u
)
+
C
,
u
=
φ
(
x
)
\displaystyle\int f(u)du=F(u)+C,u=\varphi(x)
∫f(u)du=F(u)+C,u=φ(x)存在连续导数,则
∫
f
[
φ
(
x
)
]
φ
′
(
x
)
d
x
=
∫
f
[
φ
(
x
)
]
d
φ
(
x
)
=
F
[
φ
(
x
)
]
+
C
\int f[\varphi(x)]\varphi'(x)dx=\int f[\varphi(x)]d\varphi(x)=F[\varphi(x)]+C
∫f[φ(x)]φ′(x)dx=∫f[φ(x)]dφ(x)=F[φ(x)]+C
使用这种方法的关键在于将
∫
f
(
x
)
d
x
\displaystyle\int f(x)dx
∫f(x)dx凑成
∫
f
[
φ
(
x
)
]
φ
′
(
x
)
d
x
\displaystyle\int f[\varphi(x)]\varphi'(x)dx
∫f[φ(x)]φ′(x)dx。
常见的凑微分形式:
(
1
)
∫
f
(
a
x
+
b
)
d
x
=
1
a
∫
f
(
a
x
+
b
)
d
(
a
x
+
b
)
(
2
)
∫
x
m
f
(
a
x
m
+
1
+
b
)
d
x
=
1
(
m
+
1
)
a
∫
f
(
a
x
m
+
1
+
b
)
d
(
a
x
m
+
1
+
b
)
(
m
≠
−
1
)
(
3
)
∫
f
(
x
)
d
x
x
=
2
∫
f
(
x
)
d
(
x
)
;
(
4
)
∫
f
(
e
x
)
e
x
d
x
=
∫
f
(
e
x
)
d
(
e
x
)
;
(
5
)
∫
f
(
ln
x
)
1
x
d
x
=
∫
f
(
ln
x
)
d
(
ln
x
)
(
6
)
∫
f
(
sin
x
)
cos
x
d
x
=
∫
f
(
sin
x
)
d
(
sin
x
)
(
7
)
∫
f
(
cos
x
)
sin
x
d
x
=
−
∫
f
(
cos
x
)
d
(
cos
x
)
(
8
)
∫
f
(
tan
x
)
1
cos
2
x
d
x
=
∫
f
(
tan
x
)
d
(
tan
x
)
(
9
)
∫
f
(
arcsin
x
)
1
1
−
x
2
d
x
=
∫
f
(
arcsin
x
)
d
(
arcsin
x
)
(
10
)
∫
f
(
arctan
x
)
1
1
+
x
2
d
x
=
∫
f
(
arctan
x
)
d
(
arctan
x
)
\begin{aligned} &(1)\ \int f(ax+b)dx=\frac1a\int f(ax+b)d(ax+b) \\ &(2)\ \int x^{m}f(ax^{m+1}+b)dx=\frac{1}{(m+1)a}\int f(ax^{m+1}+b)d(ax^{m+1}+b)\ (m\neq-1) \\ &(3)\ \int f\big(\sqrt{x}\big)\frac{dx}{\sqrt{x}}=2\int f\big(\sqrt{x}\big)d\big(\sqrt{x}\big); \\ &(4)\ \int f(e^x)e^xdx=\int f(e^x)d(e^x); \\ &(5)\ \int f(\ln x)\frac{1}{x}dx=\int f(\ln x)d(\ln x) \\ &(6)\ \int f(\sin x)\cos xdx=\int f(\sin x)d(\sin x)\\ &(7)\ \int f(\cos x)\sin xdx=-\int f(\cos x)d(\cos x) \\ &(8)\ \int f(\tan x)\frac{1}{\cos^{2}x}dx=\int f(\tan x)d(\tan x)\\ &(9)\ \int f(\arcsin x)\frac{1}{\sqrt{1-x^{2}}}dx=\int f(\arcsin x)d(\arcsin x) \\ &(10)\ \int f(\arctan x)\frac{1}{1+x^{2}}dx=\int f(\arctan x)d(\arctan x)\\ \end{aligned}
(1) ∫f(ax+b)dx=a1∫f(ax+b)d(ax+b)(2) ∫xmf(axm+1+b)dx=(m+1)a1∫f(axm+1+b)d(axm+1+b) (m=−1)(3) ∫f(x)xdx=2∫f(x)d(x);(4) ∫f(ex)exdx=∫f(ex)d(ex);(5) ∫f(lnx)x1dx=∫f(lnx)d(lnx)(6) ∫f(sinx)cosxdx=∫f(sinx)d(sinx)(7) ∫f(cosx)sinxdx=−∫f(cosx)d(cosx)(8) ∫f(tanx)cos2x1dx=∫f(tanx)d(tanx)(9) ∫f(arcsinx)1−x21dx=∫f(arcsinx)d(arcsinx)(10) ∫f(arctanx)1+x21dx=∫f(arctanx)d(arctanx)
第二换元积分法
设
x
=
φ
(
t
)
x=\varphi(t)
x=φ(t)是单调的、可导的函数,且
φ
(
t
)
≠
0
\varphi(t)\ne0
φ(t)=0,则
∫
f
(
x
)
d
x
=
∫
f
[
φ
(
t
)
]
φ
′
(
t
)
d
t
=
F
(
t
)
+
C
=
F
[
φ
−
1
(
x
)
]
+
C
\int f(x)dx=\int f[\varphi(t)]\varphi'(t)dt=F(t)+C=F[\varphi^{-1}(x)]+C
∫f(x)dx=∫f[φ(t)]φ′(t)dt=F(t)+C=F[φ−1(x)]+C
变量代换:
- 被积函数含有 a 2 − x 2 \sqrt{a^2-x^2} a2−x2,令 x = a sin t ( 或 cos x ) x=a\sin t \ (或\cos x) x=asint (或cosx)
- 被积函数含有 a 2 + x 2 \sqrt{a^2+x^2} a2+x2,令 x = a tan t x=a\tan t x=atant
- 被积函数含有 x 2 − a 2 \sqrt{x^2-a^2} x2−a2,令 x = a sec t x=a\sec t x=asect
分部积分法
公式
∫
u
v
′
d
x
=
u
v
−
∫
u
′
v
d
x
\int uv'dx=uv - \int u'vdx
∫uv′dx=uv−∫u′vdx
即
∫
u
d
v
=
u
v
−
∫
v
d
u
\int udv=uv - \int vdu
∫udv=uv−∫vdu
怎么用?—— 适用的函数类
适用于两类不同函数相乘
∫
p
n
(
x
)
e
α
x
d
x
,
∫
p
n
(
x
)
sin
α
x
d
x
,
∫
p
n
(
x
)
cos
α
x
d
x
,
∫
p
n
(
x
)
ln
x
d
x
,
∫
p
n
(
x
)
arctan
x
d
x
,
∫
p
n
(
x
)
arcsin
x
d
x
,
∫
e
α
x
sin
β
x
d
x
,
∫
e
α
x
cos
β
x
d
x
.
\begin{aligned} &\int p_{n}(x)e^{\alpha x}\operatorname{d}x,\ \int p_{n}(x)\sin\alpha x\operatorname{d}x,\ \int p_{n}(x)\cos\alpha xdx,\ \int p_{n}(x)\ln xdx,\\ &\int p_{n}(x)\arctan xdx, \ \int p_{n}(x)\arcsin xdx,\ \int e^{\alpha x}\sin\beta xdx,\ \int e^{\alpha x}\cos\beta xdx. \end{aligned}
∫pn(x)eαxdx, ∫pn(x)sinαxdx, ∫pn(x)cosαxdx, ∫pn(x)lnxdx,∫pn(x)arctanxdx, ∫pn(x)arcsinxdx, ∫eαxsinβxdx, ∫eαxcosβxdx.
p
n
(
x
)
p_{n}(x)
pn(x)为
x
x
x的
n
n
n次多项式。
如何用?—— u, v 的选取
- ∫ p n ( x ) e α x d x , ∫ p n ( x ) sin α x d x , ∫ p n ( x ) cos α x d x \displaystyle\int p_{n}(x)e^{\alpha x}\operatorname{d}x,\ \int p_{n}(x)\sin\alpha x\operatorname{d}x,\ \int p_{n}(x)\cos\alpha xdx ∫pn(x)eαxdx, ∫pn(x)sinαxdx, ∫pn(x)cosαxdx 把多项式以外的函数凑进微分号。
- ∫ e α x sin β x d x , ∫ e α x cos β x d x \displaystyle\int e^{\alpha x}\sin\beta xdx,\ \int e^{\alpha x}\cos\beta xdx ∫eαxsinβxdx, ∫eαxcosβxdx 把指数函数(更简单)或三角函数凑进微分号。
- ∫ p n ( x ) ln x d x , ∫ p n ( x ) arctan x d x , ∫ p n ( x ) arcsin x d x \displaystyle\int p_{n}(x)\ln xdx,\ \int p_{n}(x)\arctan xdx,\ \int p_{n}(x)\arcsin xdx ∫pn(x)lnxdx, ∫pn(x)arctanxdx, ∫pn(x)arcsinxdx 把多项式函数凑进微分号。
三种常见“积不出”的积分
有原函数,但原函数不是初等函数,无法用基本初等函数经过加减乘除和复合表示出来,往往在二重积分出现。
{
∫
e
x
2
d
x
∫
sin
x
x
d
x
∫
cos
x
x
d
x
\begin{aligned} \begin{cases} &\displaystyle\int e^{x^2}dx\\ &\displaystyle\int\frac{\sin x}{x}dx\\ &\displaystyle\int\frac{\cos x}{x}dx \end{cases} \end{aligned}
⎩
⎨
⎧∫ex2dx∫xsinxdx∫xcosxdx
三类常见可积函数积分
- 有理函数积分
∫
R
(
x
)
d
x
\displaystyle\int R(x)\mathrm{d}x
∫R(x)dx
- 一般法(部分分式法)
- 特殊方法(加项减项拆或凑微分降幂)
- 三角有理式积分
∫
R
(
sin
x
,
cos
x
)
d
x
\displaystyle\int R(\sin x,\cos x)dx
∫R(sinx,cosx)dx
- 一般方法(万能代换) 令
tan
x
2
=
t
\tan\displaystyle\frac x2=t
tan2x=t
∫ R ( sin x , cos x ) d x = ∫ R ( 2 t 1 + t 2 , 1 − t 2 1 + t 2 ) 2 1 + t 2 d t \int R(\sin x,\cos x)dx=\int R(\frac{2t}{1+t^2},\frac{1-t^2}{1+t^2})\frac2{1+t^2}dt ∫R(sinx,cosx)dx=∫R(1+t22t,1+t21−t2)1+t22dt - 特殊方法(三角变形,换元,分部)
- 若 R ( − sin x , cos x ) = − R ( sin x , cos x ) R(-\sin x,\cos x)=-R(\sin x,\cos x) R(−sinx,cosx)=−R(sinx,cosx),则令 u = cos x u=\cos x u=cosx,或凑 d cos x d\cos x dcosx
- 若 R ( sin x , − cos x ) = − R ( sin x , cos x ) R(\sin x,-\cos x)=-R(\sin x,\cos x) R(sinx,−cosx)=−R(sinx,cosx),则令 u = sin x u=\sin x u=sinx,或凑 d sin x d\sin x dsinx
- 若 R ( − sin x , − cos x ) = R ( sin x , cos x ) R(-\sin x,-\cos x)=R(\sin x,\cos x) R(−sinx,−cosx)=R(sinx,cosx),则令 u = tan x u=\tan x u=tanx,或凑 d tan x d\tan x dtanx
- 一般方法(万能代换) 令
tan
x
2
=
t
\tan\displaystyle\frac x2=t
tan2x=t
- 简单无理函数积分
∫
R
(
x
,
a
x
+
b
c
x
+
d
n
)
d
x
\displaystyle\int R(x,\sqrt[n]{\frac{ax+b}{cx+d}})dx
∫R(x,ncx+dax+b)dx
- 令 a x + b c x + d n = t \displaystyle\sqrt[n]{\frac{ax+b}{cx+d}}=t ncx+dax+b=t.
个人笔记,如有错误,烦请指正