【不定积分】基本公式及积分法

基本公式

( 1 )   ∫ 0 d x = C ( 3 )   ∫ 1 x d x = ln ⁡ ∣ x ∣ + C ( 5 )   ∫ e x d x = e x + C ( 7 )   ∫ cos ⁡ x d x = sin ⁡ x + C ( 9 )   ∫ csc ⁡ 2 x d x = − cot ⁡ x + C ( 11 )   ∫ csc ⁡ x cot ⁡ x d x = − csc ⁡ x + C ( 13 )   ∫ 1 1 + x 2 d x = arctan ⁡ x + C ( 15 )   ∫ d x a 2 + x 2 = 1 a arctan ⁡ x a + C ( 17 )   ∫ d x x 2 + a 2 = ln ⁡ ( x + x 2 + a 2 ) + C ( 19 )   ∫ sec ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C ( 2 )   ∫ x α d x = 1 α + 1 x α + 1 + C   ( α ≠ − 1 ) ( 4 )   ∫ a x = a x ln ⁡ a + C   ( a > 0 ,   a ≠ 1 ) ( 6 )   ∫ sin ⁡ x d x = − cos ⁡ x + C ( 8 )   ∫ sec ⁡ 2 x d x = tan ⁡ x + C ( 10 )   ∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C ( 12 )   ∫ 1 1 − x 2 d x = arcsin ⁡ x + C ( 14 )   ∫ d x a 2 − x 2 = arcsin ⁡ x a + C ( 16 )   ∫ d x x 2 − a 2 = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C ( 18 )   ∫ d x x 2 − a 2 = ln ⁡ ( x + x 2 − a 2 ) + C ( 20 )   ∫ csc ⁡ x d x = − ln ⁡ ∣ csc ⁡ x + cot ⁡ x ∣ + C \begin{aligned} &(1)\ \int0dx=C \\ &(3)\ \int\frac{1}{x}dx=\ln|x|+C \\ &(5)\ \int e^xdx=e^x+C \\ &(7)\ \int\cos xdx=\sin x+C \\ &(9)\ \int\csc^2xdx=-\cot x+C \\ &(11)\ \int\csc x\cot xdx=-\csc x+C \\ &(13)\ \int\frac{1}{1+x^2}dx=\arctan x +C\\ &(15)\ \int\frac{dx}{a^2+x^2}=\frac{1}{a}\arctan \frac{x}{a} +C\\ &(17)\ \int\frac{dx}{\sqrt{x^2+a^2}}= \ln(x+\sqrt{x^2+a^2}) +C \\ &(19)\ \int\sec xdx=\ln|\sec x+\tan x| +C \\ \end{aligned} \qquad \begin{aligned} &(2)\ \int x^\alpha dx=\frac{1}{\alpha+1}x^{\alpha+1} +C\ (\alpha\ne-1) \\ &(4)\ \int a^x=\frac{a^x}{\ln a} +C\ (a>0,\ a\ne1) \\ &(6)\ \int\sin xdx=-\cos x +C \\ &(8)\ \int\sec^2 xdx=\tan x +C \\ &(10)\ \int\sec x\tan xdx=\sec x +C \\ &(12)\ \int\frac{1}{\sqrt{1-x^2}}dx=\arcsin x +C \\ &(14)\ \int\frac{dx}{\sqrt{a^2-x^2}}=\arcsin \frac{x}{a} +C \\ &(16)\ \int\frac{dx}{x^2-a^2}=\frac{1}{2a}\ln|\frac{x-a}{x+a}| +C \\ &(18)\ \int\frac{dx}{\sqrt{x^2-a^2}}= \ln(x+\sqrt{x^2-a^2}) +C \\ &(20)\ \int\csc xdx=-\ln|\csc x+\cot x| +C \\ \end{aligned} (1) 0dx=C(3) x1dx=lnx+C(5) exdx=ex+C(7) cosxdx=sinx+C(9) csc2xdx=cotx+C(11) cscxcotxdx=cscx+C(13) 1+x21dx=arctanx+C(15) a2+x2dx=a1arctanax+C(17) x2+a2 dx=ln(x+x2+a2 )+C(19) secxdx=lnsecx+tanx+C(2) xαdx=α+11xα+1+C (α=1)(4) ax=lnaax+C (a>0, a=1)(6) sinxdx=cosx+C(8) sec2xdx=tanx+C(10) secxtanxdx=secx+C(12) 1x2 1dx=arcsinx+C(14) a2x2 dx=arcsinax+C(16) x2a2dx=2a1lnx+axa+C(18) x2a2 dx=ln(x+x2a2 )+C(20) cscxdx=lncscx+cotx+C

积分法

换元积分法

第一换元积分法

∫ f ( u ) d u = F ( u ) + C , u = φ ( x ) \displaystyle\int f(u)du=F(u)+C,u=\varphi(x) f(u)du=F(u)+Cu=φ(x)存在连续导数,则
∫ f [ φ ( x ) ] φ ′ ( x ) d x = ∫ f [ φ ( x ) ] d φ ( x ) = F [ φ ( x ) ] + C \int f[\varphi(x)]\varphi'(x)dx=\int f[\varphi(x)]d\varphi(x)=F[\varphi(x)]+C f[φ(x)]φ(x)dx=f[φ(x)]dφ(x)=F[φ(x)]+C
使用这种方法的关键在于将 ∫ f ( x ) d x \displaystyle\int f(x)dx f(x)dx凑成 ∫ f [ φ ( x ) ] φ ′ ( x ) d x \displaystyle\int f[\varphi(x)]\varphi'(x)dx f[φ(x)]φ(x)dx
常见的凑微分形式:
( 1 )   ∫ f ( a x + b ) d x = 1 a ∫ f ( a x + b ) d ( a x + b ) ( 2 )   ∫ x m f ( a x m + 1 + b ) d x = 1 ( m + 1 ) a ∫ f ( a x m + 1 + b ) d ( a x m + 1 + b )   ( m ≠ − 1 ) ( 3 )   ∫ f ( x ) d x x = 2 ∫ f ( x ) d ( x ) ; ( 4 )   ∫ f ( e x ) e x d x = ∫ f ( e x ) d ( e x ) ; ( 5 )   ∫ f ( ln ⁡ x ) 1 x d x = ∫ f ( ln ⁡ x ) d ( ln ⁡ x ) ( 6 )   ∫ f ( sin ⁡ x ) cos ⁡ x d x = ∫ f ( sin ⁡ x ) d ( sin ⁡ x ) ( 7 )   ∫ f ( cos ⁡ x ) sin ⁡ x d x = − ∫ f ( cos ⁡ x ) d ( cos ⁡ x ) ( 8 )   ∫ f ( tan ⁡ x ) 1 cos ⁡ 2 x d x = ∫ f ( tan ⁡ x ) d ( tan ⁡ x ) ( 9 )   ∫ f ( arcsin ⁡ x ) 1 1 − x 2 d x = ∫ f ( arcsin ⁡ x ) d ( arcsin ⁡ x ) ( 10 )   ∫ f ( arctan ⁡ x ) 1 1 + x 2 d x = ∫ f ( arctan ⁡ x ) d ( arctan ⁡ x ) \begin{aligned} &(1)\ \int f(ax+b)dx=\frac1a\int f(ax+b)d(ax+b) \\ &(2)\ \int x^{m}f(ax^{m+1}+b)dx=\frac{1}{(m+1)a}\int f(ax^{m+1}+b)d(ax^{m+1}+b)\ (m\neq-1) \\ &(3)\ \int f\big(\sqrt{x}\big)\frac{dx}{\sqrt{x}}=2\int f\big(\sqrt{x}\big)d\big(\sqrt{x}\big); \\ &(4)\ \int f(e^x)e^xdx=\int f(e^x)d(e^x); \\ &(5)\ \int f(\ln x)\frac{1}{x}dx=\int f(\ln x)d(\ln x) \\ &(6)\ \int f(\sin x)\cos xdx=\int f(\sin x)d(\sin x)\\ &(7)\ \int f(\cos x)\sin xdx=-\int f(\cos x)d(\cos x) \\ &(8)\ \int f(\tan x)\frac{1}{\cos^{2}x}dx=\int f(\tan x)d(\tan x)\\ &(9)\ \int f(\arcsin x)\frac{1}{\sqrt{1-x^{2}}}dx=\int f(\arcsin x)d(\arcsin x) \\ &(10)\ \int f(\arctan x)\frac{1}{1+x^{2}}dx=\int f(\arctan x)d(\arctan x)\\ \end{aligned} (1) f(ax+b)dx=a1f(ax+b)d(ax+b)(2) xmf(axm+1+b)dx=(m+1)a1f(axm+1+b)d(axm+1+b) (m=1)(3) f(x )x dx=2f(x )d(x );(4) f(ex)exdx=f(ex)d(ex);(5) f(lnx)x1dx=f(lnx)d(lnx)(6) f(sinx)cosxdx=f(sinx)d(sinx)(7) f(cosx)sinxdx=f(cosx)d(cosx)(8) f(tanx)cos2x1dx=f(tanx)d(tanx)(9) f(arcsinx)1x2 1dx=f(arcsinx)d(arcsinx)(10) f(arctanx)1+x21dx=f(arctanx)d(arctanx)

第二换元积分法

x = φ ( t ) x=\varphi(t) x=φ(t)是单调的、可导的函数,且 φ ( t ) ≠ 0 \varphi(t)\ne0 φ(t)=0,则
∫ f ( x ) d x = ∫ f [ φ ( t ) ] φ ′ ( t ) d t = F ( t ) + C = F [ φ − 1 ( x ) ] + C \int f(x)dx=\int f[\varphi(t)]\varphi'(t)dt=F(t)+C=F[\varphi^{-1}(x)]+C f(x)dx=f[φ(t)]φ(t)dt=F(t)+C=F[φ1(x)]+C
变量代换:

  1. 被积函数含有 a 2 − x 2 \sqrt{a^2-x^2} a2x2 ,令 x = a sin ⁡ t   ( 或 cos ⁡ x ) x=a\sin t \ (或\cos x) x=asint (cosx)
  2. 被积函数含有 a 2 + x 2 \sqrt{a^2+x^2} a2+x2 ,令 x = a tan ⁡ t x=a\tan t x=atant
  3. 被积函数含有 x 2 − a 2 \sqrt{x^2-a^2} x2a2 ,令 x = a sec ⁡ t x=a\sec t x=asect

分部积分法

公式

∫ u v ′ d x = u v − ∫ u ′ v d x \int uv'dx=uv - \int u'vdx uvdx=uvuvdx

∫ u d v = u v − ∫ v d u \int udv=uv - \int vdu udv=uvvdu

怎么用?—— 适用的函数类

适用于两类不同函数相乘
∫ p n ( x ) e α x d ⁡ x ,   ∫ p n ( x ) sin ⁡ α x d ⁡ x ,   ∫ p n ( x ) cos ⁡ α x d x ,   ∫ p n ( x ) ln ⁡ x d x , ∫ p n ( x ) arctan ⁡ x d x ,   ∫ p n ( x ) arcsin ⁡ x d x ,   ∫ e α x sin ⁡ β x d x ,   ∫ e α x cos ⁡ β x d x . \begin{aligned} &\int p_{n}(x)e^{\alpha x}\operatorname{d}x,\ \int p_{n}(x)\sin\alpha x\operatorname{d}x,\ \int p_{n}(x)\cos\alpha xdx,\ \int p_{n}(x)\ln xdx,\\ &\int p_{n}(x)\arctan xdx, \ \int p_{n}(x)\arcsin xdx,\ \int e^{\alpha x}\sin\beta xdx,\ \int e^{\alpha x}\cos\beta xdx. \end{aligned} pn(x)eαxdx, pn(x)sinαxdx, pn(x)cosαxdx, pn(x)lnxdx,pn(x)arctanxdx, pn(x)arcsinxdx, eαxsinβxdx, eαxcosβxdx.
p n ( x ) p_{n}(x) pn(x) x x x n n n次多项式。

如何用?—— u, v 的选取

  1. ∫ p n ( x ) e α x d ⁡ x ,   ∫ p n ( x ) sin ⁡ α x d ⁡ x ,   ∫ p n ( x ) cos ⁡ α x d x \displaystyle\int p_{n}(x)e^{\alpha x}\operatorname{d}x,\ \int p_{n}(x)\sin\alpha x\operatorname{d}x,\ \int p_{n}(x)\cos\alpha xdx pn(x)eαxdx, pn(x)sinαxdx, pn(x)cosαxdx 把多项式以外的函数凑进微分号。
  2. ∫ e α x sin ⁡ β x d x ,   ∫ e α x cos ⁡ β x d x \displaystyle\int e^{\alpha x}\sin\beta xdx,\ \int e^{\alpha x}\cos\beta xdx eαxsinβxdx, eαxcosβxdx 把指数函数(更简单)或三角函数凑进微分号。
  3. ∫ p n ( x ) ln ⁡ x d x ,   ∫ p n ( x ) arctan ⁡ x d x ,   ∫ p n ( x ) arcsin ⁡ x d x \displaystyle\int p_{n}(x)\ln xdx,\ \int p_{n}(x)\arctan xdx,\ \int p_{n}(x)\arcsin xdx pn(x)lnxdx, pn(x)arctanxdx, pn(x)arcsinxdx 把多项式函数凑进微分号。

个人笔记,如有错误,烦请指正

  • 20
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值