不定积分常用公式(简洁版)

不定积分常用公式(简洁版)(持续更新中~)


对于想了解每个积分的推导过程的可移步这篇文章
不定积分常用公式(详解版)


第一部分

1. ∫ x k   d x = 1 k + 1 x k + 1 + C , k ≠ − 1 ; { ∫ 1 x 2   d x = − 1 x + C , ∫ 1 x   d x = 2 x + C , 1. \int{x^k\,dx}=\frac{1}{k+1}x^{k+1}+C, k\ne-1; \begin{cases} \int{\frac{1}{x^2}\,dx=-\frac{1}{x}+C},\\ \int{\frac{1}{\sqrt{x}}\,dx=2\sqrt{x}+C}, \\ \end{cases} 1.xkdx=k+11xk+1+C,k=1;{x21dx=x1+C,x 1dx=2x +C,

2. ∫ 1 x   d x = ln ⁡ ∣ x ∣ + C 2. \int{\frac{1}{x}}\,dx=\ln{\mid{x}\mid}+C 2.x1dx=lnx+C

3. { ∫ e x   d x = e x + C ; ∫ a x   d x = a x ln ⁡ a + C , a > 0 且 a ≠ − 1 3. \begin{cases} \int{e^x}\,dx=e^x+C;\\ \int{a^x}\,dx=\frac{a^x}{\ln{a}}+C,a>0且a\ne-1 \end{cases} 3.{exdx=ex+C;axdx=lnaax+C,a>0a=1


第二部分

1. { ∫ sin ⁡ x   d x = − cos ⁡ x + C ; ∫ cos ⁡ x   d x = sin ⁡ x + C ; 1. \begin{cases} \int{\sin{x}\,dx}=-\cos{x}+C;\\ \int{\cos{x}\,dx}=\sin{x}+C; \end{cases} 1.{sinxdx=cosx+C;cosxdx=sinx+C;

2. { ∫ tan ⁡ x   d x = − ln ⁡ ∣ cos ⁡ x ∣ + C ; ① ∫ cot ⁡ x   d x = ln ⁡ ∣ sin ⁡ x ∣ + C ; ② 2. \begin{cases} \int{\tan{x}\,dx}=-\ln{\mid{\cos{x}}\mid}+C;①\\ \int{\cot{x}\,dx}=\ln{\mid\sin{x}\mid}+C;② \end{cases} 2.{tanxdx=lncosx+C;cotxdx=lnsinx+C;

3. ∫ 1 cos ⁡ x d x = ∫ sec ⁡ x   d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C ; 3. \int{\frac{1}{\cos{x}}dx}=\int{\sec{x}\,dx}=\ln{\mid\sec{x}+\tan{x}\mid}+C; 3.cosx1dx=secxdx=lnsecx+tanx+C;

4. ∫ 1 sin ⁡ x d x = ∫ csc ⁡ x   d x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C ; 4. \int{\frac{1}{\sin{x}}dx}=\int{\csc{x}\,dx}=\ln{\mid\csc{x}-\cot{x}\mid}+C; 4.sinx1dx=cscxdx=lncscxcotx+C;

5. { ∫ sec ⁡ 2 x d x = tan ⁡ x + C ; ( 由 tan ⁡ x 的导数公式可得出 ) ∫ csc ⁡ 2 x d x = − cot ⁡ x + C ; ( 由 cot ⁡ x 的导数公式可得出 ) 5. \begin{cases} \int{\sec^2{x}dx}=\tan{x}+C;(由\tan{x}的导数公式可得出)\\ \int{\csc^2{x}dx}=-\cot{x}+C;(由\cot{x}的导数公式可得出) \end{cases} 5.{sec2xdx=tanx+C;(tanx的导数公式可得出)csc2xdx=cotx+C;(cotx的导数公式可得出)

6. { ∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C ; ( 由 sec ⁡ x 的导数公式可得出 ) ∫ csc ⁡ x cot ⁡ x d x = − csc ⁡ x + C ; ( 由 csc ⁡ x 的导数公式可得出 ) 6. \begin{cases} \int{\sec{x}\tan{x}dx}=\sec{x}+C;(由\sec{x}的导数公式可得出)\\ \int{\csc{x}\cot{x}dx}=-\csc{x}+C;(由\csc{x}的导数公式可得出) \end{cases} 6.{secxtanxdx=secx+C;(secx的导数公式可得出)cscxcotxdx=cscx+C;(cscx的导数公式可得出)


第三部分

1. { ∫ 1 1 + x 2 d x = arctan ⁡ x + C , ① ( 由 arctan ⁡ x 的导数公式可得出 ) ∫ 1 a 2 + x 2 d x = 1 a arctan ⁡ x a + C ( a > 0 ) ② ( 凑微分法,方法如下 ) 1. \begin{cases} \int{\frac{1}{1+x^2}dx}=\arctan{x}+C,①(由\arctan{x}的导数公式可得出)\\ \int{\frac{1}{a^2+x^2}dx}=\frac{1}{a}\arctan{\frac{x}{a}}+C(a>0)②(凑微分法,方法如下) \end{cases} 1.{1+x21dx=arctanx+C,(arctanx的导数公式可得出)a2+x21dx=a1arctanax+C(a>0)(凑微分法,方法如下)

2. { ∫ 1 1 − x 2 d x = arcsin ⁡ x + C , ① ( 由 arcsin ⁡ x 的导数公式可得出 ) ∫ 1 a 2 − x 2 d x = arcsin ⁡ x a + C ( a > 0 ) ② ( 凑微分法,方法同 1 ) 2. \begin{cases} \int{\frac{1}{\sqrt{1-x^2}}dx}=\arcsin{x}+C,①(由\arcsin{x}的导数公式可得出)\\ \int{\frac{1}{\sqrt{a^2-x^2}}dx}=\arcsin{\frac{x}{a}}+C(a>0)②(凑微分法,方法同1) \end{cases} 2.{1x2 1dx=arcsinx+C,(arcsinx的导数公式可得出)a2x2 1dx=arcsinax+C(a>0)(凑微分法,方法同1)

3. { ∫ 1 x 2 + a 2 d x = ln ⁡ ( x + x 2 + a 2 ) + C ( 常见 a = 1 ) , ① ∫ 1 x 2 − a 2 d x = ln ⁡ ∣ x + x 2 − a 2 ∣ + C ( ∣ x ∣ > ∣ a ∣ ) . ② 3. \begin{cases} \int{\frac{1}{\sqrt{x^2+a^2}}dx}=\ln(x+\sqrt{x^2+a^2})+C(常见a=1),①\\ \int{\frac{1}{\sqrt{x^2-a^2}}dx}=\ln|x+\sqrt{x^2-a^2}|+C(|x|>|a|).②\\ \end{cases} 3.{x2+a2 1dx=ln(x+x2+a2 )+C(常见a=1),x2a2 1dx=lnx+x2a2 +C(x>a).②


第四部分

1. { ∫ 1 x 2 − a 2 d x = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C      ① ∫ 1 a 2 − x 2 d x = 1 2 a ln ⁡ ∣ x + a x − a ∣ + C      ② 1. \begin{cases} \int{\frac{1}{x^2-a^2}dx}=\frac{1}{2a}\ln|\frac{x-a}{x+a}|+C\,\,\,\,①\\ \int{\frac{1}{a^2-x^2}dx}=\frac{1}{2a}\ln|\frac{x+a}{x-a}|+C\,\,\,\,② \end{cases} 1.{x2a21dx=2a1lnx+axa+Ca2x21dx=2a1lnxax+a+C

2. ∫ a 2 − x 2 d x = a 2 2 arcsin ⁡ x a + x 2 a 2 − x 2 + C ( a > ∣ x ∣ ⩾ 0 ) . 2. \int{\sqrt{a^2-x^2}dx}=\frac{a^2}{2}\arcsin{\frac{x}{a}}+{\frac{x}{2}\sqrt{a^2-x^2}+C}(a>|x|\geqslant{0}). 2.a2x2 dx=2a2arcsinax+2xa2x2 +C(a>x0).

3. { ∫ sin ⁡ 2 x d x = x 2 − sin ⁡ 2 x 4 + C . ( sin ⁡ 2 x = 1 − cos ⁡ 2 x 2 ) ∫ cos ⁡ 2 x d x = x 2 + sin ⁡ 2 x 4 + C . ( cos ⁡ 2 x = 1 + cos ⁡ 2 x 2 ) ∫ tan ⁡ 2 x d x = tan ⁡ x − x + C . ( tan ⁡ 2 x = sec ⁡ 2 x − 1 ) ∫ cot ⁡ 2 x d x = − cot ⁡ x − x + C . ( cot ⁡ 2 x = csc ⁡ 2 x − 1 ) 3. \begin{cases} \int{\sin^2{x}dx}=\frac{x}{2}-\frac{\sin{2x}}{4}+C.(\sin^2{x}=\frac{1-\cos{2x}}{2})\\ \int{\cos^2{x}dx}=\frac{x}{2}+\frac{\sin{2x}}{4}+C.(\cos^2{x}=\frac{1+\cos{2x}}{2})\\ \int{\tan^2{x}dx}=\tan{x}-x+C.(\tan^2{x}=\sec^2{x}-1)\\ \int{\cot^2{x}dx}=-\cot{x}-x+C.(\cot^2{x}=\csc^2{x}-1)\\ \end{cases} 3. sin2xdx=2x4sin2x+C.(sin2x=21cos2x)cos2xdx=2x+4sin2x+C.(cos2x=21+cos2x)tan2xdx=tanxx+C.(tan2x=sec2x1)cot2xdx=cotxx+C.(cot2x=csc2x1)


其他

1. ∫ x 2 1 + x 2 d x = x − arctan ⁡ x + C 1. \int{\frac{x^2}{1+x^2}dx}=x-\arctan{x}+C 1.1+x2x2dx=xarctanx+C


2. ∫ 1 1 + sin ⁡ x d x = tan ⁡ x − 1 cos ⁡ x + C 2. \int{\frac{1}{1+\sin{x}}}dx=\tan{x}-\frac{1}{\cos{x}}+C 2.1+sinx1dx=tanxcosx1+C


3. ∫ a 2 + x 2 d x = 1 2 [ x x 2 + a 2 + a 2 ln ⁡ ∣ a 2 + x 2 + x a ∣ + C ] 3. \int{\sqrt{a^2+x^2}}dx=\frac{1}{2}[x\sqrt{x^2+a^2}+a^2\ln|\frac{\sqrt{a^2+x^2}+x}{a}|+C] 3.a2+x2 dx=21[xx2+a2 +a2lnaa2+x2 +x+C]

  • 4
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值